\input epsf \input graphicx \magnification 1300 \vsize 10truein \nopagenumbers \parskip 10pt \parindent 0 pt Exam 1 Oct. 6, 2005 \hfil SHOW ALL WORK \hfil \vskip -10pt Math 25 Calculus I \hfil Either circle your answers or place on answer line. \hfil [15] 1.) Calculate the following limit: $lim_{x \rightarrow +\infty} {\sqrt{4x^2 + 9x + 8} \over 5x + 4}$ \vfill \centerline{Answer 1.) $\underline{\hskip 4in}$} \vskip 10pt [15] 2.) Find the derivative of $f(x) = \sqrt{x}$ by using the definition of derivative. \vfill \centerline{Answer 2.) $\underline{\hskip 4in}$} \eject Find the following derivatives \vskip 10pt [15]~ 3.) ${d \over dx}[{e^x(x^2 - x + 3) \over cos(2x)}]$ \vfil \centerline{Answer 3.) $\underline{\hskip 4in}$} \vskip 10pt [15]~ 4.) ${d \over dx}[2sin(e^{x^3} + 4)]$ \vfil \centerline{Answer 4.) $\underline{\hskip 4in}$} \eject 5.) Answer the following questions based on the graph of $f$ given below. \centerline{\includegraphics[width=36ex]{graph25a}} %%\centerline{\epsfbox{graph25a.eps}} [2] 5a.) domain of $f = \underline{\hskip 0.7in}$ \hfil [2] 5b.) range of $f = \underline{\hskip 0.7in}$ \vskip 15pt [1] 5c.) Is $f$ one-to-one? $\underline{\hskip 0.7in}$ \hfil [2] 5d.) Does $f^{-1}$ exist? $\underline{\hskip 0.7in}$ \vskip 15pt [1] 5e.) $f(1) = \underline{\hskip 0.7in}$ \hfil [2] 5g.) $f\hskip 1pt'(-1) = \underline{\hskip 0.7in}$ \vskip 15pt [2] 5f.) Solve $f(x) = 1: \underline{\hskip 0.7in}$ \vskip 15pt [2] 5i.) $lim_{x \rightarrow +\infty} f(x) = \underline{\hskip 0.7in}$ \hfil [2] 5j.) $lim_{x \rightarrow -\infty} f(x) = \underline{\hskip 0.7in}$ \vskip 15pt [2] 5k.) $lim_{x \rightarrow 3^+} f(x) = \underline{\hskip 0.7in}$ \hfil [2] 5l.) $lim_{x \rightarrow 3^-} f(x) = \underline{\hskip 0.7in}$ \vskip 15pt [2] 5m.) State all points where $f$ is not continuous: $\underline{\hskip 1.7in}$ \vskip 15pt [2] 5n.) State all points where $f$ is not differentiable: $\underline{\hskip 1.7in}$ %%\centerline{\epsfbox{graph25.eps,width=6truein}} \includegraphics[width=83ex]{graph25} \end 6.) Given the graph of $y = f(x)$ below, draw the following graphs: [4] 6a) y = \hfil \end Review Problems Ch 3 p.270-274 Concept check: 1, 3 TF Quiz: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13 Exercises: 1 - 14, 17, 19, 21-24, 26, 30, 32, 35, 37, 39, 41, 42, 44, 55-57, 59, 61, 63, 67, 68, 84, [85-87 (but ignore acceleration)], 88, 100, 101, 102 Ch 2 p. 176 - 179 Concept check: 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 TF Quiz: All Exercises: [1, 2], 3-12, [13], 14, [15-21], 25, 26, [31, 32], [35], 37, [39], 40, 41ab, [44-46], [47ab], 49 Ch 1: Concept check: 1, 3, 4, 6, 7, 8, 9, 11, 12, 13 Exercises: 1, 2, 5-8, 10, 19, 24, 25, 26 Tuesday Quiz: Proof + 3.6 Prove $(f + g)' = f' + g' $ $(cf)' = c(f')$ $f$ differentiable implies $f$ continuous: Show $lim_{x \rightarrow a} f(x) = f(a)$ Show $lim_{x \rightarrow a} [f(x) - f(a)] = 0$ $f$ differentiable at $a$ implies $f'(a)$ exists and $lim_{x \rightarrow a} {f(x) - f(a) \over x - a} = f'(a)$ Hence $lim_{x \rightarrow a} [f(x) - f(a)] = lim_{x \rightarrow a} {f(x) - f(a) \over x - a} (x-a) = lim_{x \rightarrow a} f'(a) (x - a) f'(a) lim_{x \rightarrow a} (x - a) = f'(a) (0) = 0$. $lim_{x \rightarrow a} f(x) = lim_{x \rightarrow a} [f(x) - f(a) + f(a)] = lim_{x \rightarrow a} [f(x) - f(a)] + lim_{x \rightarrow a} f(a) = 0 + f(a)$ \end