%%\input epsf \input graphicx \nopagenumbers \magnification 1400 \vsize 9.5truein \voffset -.4truein \parskip 9pt \parindent 0pt \hsize 7truein \hoffset -.4truein Find the area bounded by the functions $y = 2x^3$ and $y = 2x^{1 \over 3}$. 1.) Find points of intersection: $2x^3 = 2x^{1 \over 3}$ implies $x^3 = x^{1 \over 3}$ implies $x^9 = x$. \hfil \break Thus $x^9 - x = x(x^8 - 1)= 0$. Hence $x = 0$ and $x^8 - 1 = 0$ and $x^8 = 1$ and thus $x = 1, -1$ Hence the functions $y = 2x^3$ and $y = 2x^{1 \over 3}$ intersect when $x = -1, 0, 1$ 2.) Draw a rough graph: \vskip -20pt \centerline{\includegraphics[width=24ex]{6_2}} \vskip -20pt 3.) Find area: Method 1: Use vertical rectangles: $\int_{-1}^0 [2x^3 - 2x^{1 \over 3}]dx + \int_0^1 [2x^{1 \over 3} - 2x^{3}]dx$ \vfill Method 2: Use horizontal rectangles: \centerline{\includegraphics[width=24ex]{6_2}} If $y = 2x^3$, then $x = ({y \over 2})^{1 \over 3}$. If $y = 2x^{1 \over 3}$, then $x = ({y \over 2})^{3}$. When $x = -1, y = -2$. When $x = 0, y = 0$. When $x = 1, y = 2$. $\int_{-2}^0 [({y \over 2})^{3}- ({y \over 2})^{1 \over 3}]dy + \int_0^2 [ ({y \over 2})^{1 \over 3} - ({y \over 2})^{3}]dy$ \eject Find the volume of the object obtained by rotating the area bounded by the functions $y = 2x^3$ and $y = 2x^{1 \over 3}$ about the $x-$axis ($y = 0$): \centerline{\includegraphics[width=24ex]{6_2}} $\pi \int_{-1}^0[(2x^{1 \over 3})^2 - (2x^{3})^2]dx + \pi \int_0^1 [(2x^{1 \over 3})^2 - (2x^{3})^2]dx$ {$ = \int_{-1}^1[(2x^{1 \over 3})^2 - (2x^{3})^2]dx$} \vfill Find the volume of the object obtained by rotating the area bounded by the functions $y = 2x^3$ and $y = 2x^{1 \over 3}$. about $y = 4$: \centerline{\includegraphics[width=24ex]{6_2}} $\pi \int_{-1}^0[ (4 - 2x^{1 \over 3})^2 - (4 - 2x^{3})^2]dx +\pi \int_0^1 [(4 - 2x^{3})^2 - (4 - 2x^{1 \over 3})^2]dx$ \vfill Find the volume of the object obtained by rotating the area bounded by the functions $y = 2x^3$ and $y = 2x^{1 \over 3}$. about $y = -2$: \centerline{\includegraphics[width=24ex]{6_2}} $\pi \int_{-1}^0[ (2x^{ 3} - (-2) )^2 - (2x^{1 \over 3} - (-2) )^2]dx +\pi \int_0^1 [(2x^{1 \over 3} - (-2) )^2 - (2x^{3} - (-2) )^2]dx$ $ = \pi \int_{-1}^0[ (2x^{ 3} + 2 )^2 - (2x^{1 \over 3} + 2 )^2]dx +\pi \int_0^1 [(2x^{1 \over 3}+ 2 )^2 - (2x^{3} + 2 )^2]dx$ \eject Find the volume of the object obtained by rotating the area bounded by the functions $y = 2x^3$ ($x = ({y \over 2})^{1 \over 3}$)and $y = 2x^{1 \over 3}$ ($x = ({y \over 2})^{3}$) about the $y-$axis ($x = 0$): \centerline{\includegraphics[width=24ex]{6_2}} $\pi \int_{-2}^0 [( ({y \over 2})^{1 \over 3})^2 - (({y \over 2})^{ 3})^2]dy + \pi \int_0^2 [ (({y \over 2})^{1 \over 3})^2 - (({y \over 2})^{3})^2]dy$ = $\pi \int_{-2}^2 [ (({y \over 2})^{1 \over 3})^2 - (({y \over 2})^{ 3})^2 ]dy $ \vfill Find the volume of the object obtained by rotating the area bounded by the functions $y = 2x^3$ ($x = ({y \over 2})^{1 \over 3}$)and $y = 2x^{1 \over 3}$ ($x = ({y \over 2})^{3}$) about $x = 8$: \centerline{\includegraphics[width=24ex]{6_2}} $\pi \int_{-2}^0 [( 8 - ({y \over 2})^{3})^2 - ( 8 - ({y \over 2})^{ 1 \over 3})^2]dy + \pi \int_0^2 [ ( 8 - ({y \over 2})^{1 \over 3})^2 - ( 8 - ({y \over 2})^{3})^2]dy$ \vfill Find the volume of the object obtained by rotating the area bounded by the functions $y = 2x^3$ ($x = ({y \over 2})^{1 \over 3}$)and $y = 2x^{1 \over 3}$ ($x = ({y \over 2})^{3}$) about $x = -1$: \centerline{\includegraphics[width=24ex]{6_2}} $\pi \int_{-2}^0 [( ({y \over 2})^{1 \over 3} - 1 )^2 - (({y \over 2})^{ 3} - 1 )^2]dy + \pi \int_0^2 [ (({y \over 2})^{3} - 1 )^2 - (({y \over 2})^{1 \over 3} - 1 )^2]dy$ \end Iowa Income Tax - Refund Processing Hoover State Office Building Des Moines IA 50319-0120