\input epsf \input graphicx %%\input ../../PAPERS/GOLD/psfig \magnification 2000 \vsize 9.5 truein \voffset -0.3truein \hoffset -0.3truein \hsize 6.9 truein \nopagenumbers \parskip=8pt \parindent= 0pt \def\u{\vskip -5pt} \def\v{\vskip 2.2in} \def\w{\vskip 7pt} \def\z{\vskip 1.2in} Find the area between the curve $y^2 = 2x - 2$ and $y = x - 5$. Method 1: Using $dx$ 1.) Find points of interesection between the two curves. $y^2 = 2x - 2$ and $y = x - 5$. $(x-5)^2 = 2x - 2$ $x^2 - 10x + 25 = 2x - 2$ $x^2 - 12x + 27 = 0$ $(x - 3)(x - 9) = 0$. Hence $x = 3, 9$. 2.) Determine which is larger. Between 1 and 3: $\sqrt{2x - 2} > -\sqrt{2x - 2}$ Between 3 and 9: $\sqrt{2x - 2} > x - 5$ 3.) Write as integral(s) Note that between 1 and 3, the height of the rectangles is $\sqrt{2x - 2} - (-\sqrt{2x - 2})$ and the width is $dx$. Note that between 3 and 9, the height of the rectangles is $\sqrt{2x - 2} - (x-5)$ and the width is $dx$. $\int_1^3 [\sqrt{2x - 2} - (-\sqrt{2x - 2})]dx + \int_3^9 [\sqrt{2x - 2} - (x-5)]dx$ 4.) Evaluate the integral $\int_1^3 [2\sqrt{2x - 2}]dx + \int_3^9 [\sqrt{2x - 2} - (x-5)]dx$ $= \int_1^3 [2\sqrt{2x - 2}]dx + \int_3^9 (\sqrt{2x - 2})dx - \int_3^9(x-5)dx$ Let $u = 2x - 2$, $du = 2dx$, \hfil \break $x = 1: u = 2(1) - 2 = 0$; \hfil \break $x = 3: u = 2(3) - 2 = 4$; \hfil \break $x = 9: u = 2(9) - 2 = 16$ $= \int_0^4 u^{1 \over 2}du + \int_4^{16} {1 \over 2}u^{1 \over 2}du + \int_3^9(-x+5)dx$ \hfil \break $= {2 \over 3} u^{3 \over 2}|_0^4 + {1 \over 3} u^{3 \over 2}|_4^{16} + (-{1 \over 2}x^2 + 5x)|_3^{9}$ $ = {2 \over 3} (4^{3 \over 2} - 0^{3 \over 2}) + {1 \over 3}(16^{3 \over 2} - 4^{3 \over 2}) + (-{1 \over 2}(9)^2 + 5(9)) $ \rightline{$- (-{1 \over 2}(3)^2 + 5(3)) $} $ = {1 \over 3}[2(8) + 64 - 8] - {81 \over 2} + 45 + {9 \over 2} - 15 = 16$ $ = {72\over 3} - {72 \over 2} + 30$ $ = 24 - {36} + 30 = 18$ \eject Find the area between the curve $y^2 = 2x - 2$ and $y = x - 5$. Method 2: Using $dy$ 1.) Find points of intersection between the two curves. $x = {y^2 + 2 \over 2}$ and $x = y + 5$. ${y^2 + 2 \over 2} = y + 5$ ${y^2 + 2 } = 2y + 10$ ${y^2 -2y - 8} = 0$. Hence, $(y + 2)(y - 4) = 0$, $y = -2, 4$. (or note from method 1, that when $x = 3, y = 3 - 5 = -2$ and when $x = 9, y = 9 - 5 = 4$ 2.) Determine which function is larger. Between $y = -2$ and 4: when $y = 0$, $x = {y^2 + 2 \over 2} = {0^2 + 2 \over 2}$ and $x = y + 5 = 0 + 5 = 5$. Hence $y + 5 > {y^2 + 2 \over 2}$ when $y \in (-2, 4)$. 3.) Write as integral(s) Note that between -2 and 4, the height of the rectangles is $y + 5 - ({y^2 + 2 \over 2})$ and the width is $dy$. $\int_{-2}^4 [y + 5 - ({y^2 + 2 \over 2})]dy$ 4.) Evaluate the integral: $\int_{-2}^4 [y + 5 - ({y^2 + 2 \over 2})]dy$ = $\int_{-2}^4 [y + 5 - ({y^2\over 2} + 1)]dy$ = $\int_{-2}^4 [y + 4 - {y^2\over 2}]dy$ $ = {1 \over 2}y^2 + 4y - {1 \over 6}y^3 |_{-2}^4$ $= {1 \over 2}(4)^2 + 4(4) - {1 \over 6}(4)^3 - [{1 \over 2}(-2)^2 + 4(-2) - {1 \over 6}(-2)^3]$ $= {1 \over 2}(16 - 4) + 4(4 + 2) - {1 \over 6}[64 + 8]$ $= 6 + 24 - {1 \over 6}[72] = 30 - 12 = 18$ \end