\input epsf \input graphicx \magnification 2000 \vsize 10.7truein \hsize 7.5truein \hoffset -0.75truein \voffset -0.7truein \nopagenumbers \parskip 10pt \parindent 0 pt Use the Riemann sum definition of integral to evaluate $\int_2^5 x^3 dx$ $\Delta x = {5 - 2 \over n} = {3 \over n} $, $x_i = 2 + {3i \over n} $, $f(x) = x^3$. $\int_2^5 x^3 dx = lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(x_i) \Delta x$ $ = lim_{n \rightarrow \infty} \Sigma_{i = 1}^n (2 + {3i \over n})^3 ({3 \over n} ) $ $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [2^3 + 3(2^2)({3i \over n}) + 3(2)({3i \over n})^2 + ({3i \over n})^3] ({3 \over n} )$ $ lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [8 + {36i \over n} + {54i^2 \over n^2} + {27i^3 \over n^3}] ({3 \over n} )$ $ lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [{24 \over n} + {108i \over n^2} + {162i^2 \over n^3} + {81i^3 \over n^4}] $ $ lim_{n \rightarrow \infty} [ \Sigma_{i = 1}^n {24 \over n} + \Sigma_{i = 1}^n {108i \over n^2} + \Sigma_{i = 1}^n {162i^2 \over n^3} + \Sigma_{i = 1}^n {81i^3 \over n^4}] $ $ lim_{n \rightarrow \infty} [ {24 \over n} \Sigma_{i = 1}^n 1 + {108 \over n^2} \Sigma_{i = 1}^n {i} + {162 \over n^3} \Sigma_{i = 1}^n {i^2} + {81 \over n^4} \Sigma_{i = 1}^n {i^3} ] $ $ lim_{n \rightarrow \infty} [ {24} + {108 \over n^2} ({n(n+1) \over 2}) + {162 \over n^3} ({n(n+1)(2n+1) \over 6}) + {81 \over n^4} ({n(n+1) \over 2})^2 ] $ $ lim_{n \rightarrow \infty} [ {24} + {108 \over n} ({n+1 \over 2}) + {162 \over n^2} ({2n^2+3n+1 \over 6}) + {81 \over n^2} ({n^2 + 2n + 1 \over 4}) ] $ $ lim_{n \rightarrow \infty} [ {24} + {108 \over n} ({n(1 + {1 \over n}) \over 2}) + {162 \over n^2} ({n^2(2+{3 \over n}+{1 \over n^2}) \over 6}) + {81 \over n^2} ({n^2(1 + {2 \over n} + {1 \over n^2}) \over 4}) ] $ $ lim_{n \rightarrow \infty} [ {24} + {54} {(1 + {1 \over n}) } + {27 } ({(2+{3 \over n}+{1 \over n^2}) }) + {81} ({(1 + {2 \over n} + {1 \over n^2}) \over 4}) ] $ $= [ {24} + {54} {(1) } + {27 } ({2}) + {81} ({1 \over 4}) ] $ $= [{ {24}(4) + {54} {(4) } + {27} ({8 }) + {81} \over 4} ] $ $= { 96 + 216 + 216 + 81 \over 4} $ $= { 609 \over 4} $ Check: $\int_2^5 x^3 dx = {x^4 \over 4}|_2^5 = {5^4 - 2^4 \over 4} = {625 - 16 \over 4} = { 609 \over 4}$ $\Sigma_{i = 1}^n {i} = {n(n+1) \over 2} $, \hfil $\Sigma_{i = 1}^n {i}^2 = {n(n+1)(2n+1) \over 6} $, \hfil $\Sigma_{i = 1}^n {i}^3 = [{n(n+1) \over 2}]^2 $ \end 5.5 Examples. 1.) $\int 2x e^{x^2} dx$ 2.) $\int 3x^2 \sqrt{x^3 + 1} dx$ 3.) $\int {x dx \over x^2 + 4}$ 4.) $\int x \sqrt{1 + x} dx$ 5.) $\int \sqrt{x}(x^2 - 1)dx$ 6.) $\int cos^3(x) dx$ HW 13 [5.2) 21, 23, 24 (if you didn't turn in with HW12)] 3.10) 20, 22, 26, 32 5.4) 23, 45, 47, 50, 54 5.5) 8, 9, 11, 13, 16, 21, 28, 31, 36, 41, 42 and... \end $(a + b)^3 = (a^2 + 2ab + b^2)(a + b) = a^3 + 3a^2b + 3ab^2 + b^3$ $a^3 + 2a^2b + ab^2 a^2b + 2ab^2 + b^3$ \end