\nopagenumbers \magnification 1400 \vsize 10truein \voffset -.4truein \parskip 10pt \parindent 0pt \hsize 7.2truein \hoffset -.5truein $\int_2^6 (-{1 \over 2}t + 4)dt$ = $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(t_i ) \Delta t$ $\Delta t = {6 - 2 \over n} = {4 \over n}$ $t_i = 2 + i \Delta t = 2 + {4i \over n}$ (using right-hand endpoints) {$\int_2^6 (-{1 \over 2}t + 4)dt$ $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(2 + {4i \over n} ) ({4 \over n}) $} $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [ -{1 \over 2}(2 + {4i \over n}) + 4 ] ({4 \over n})$ $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [ -1 - {2i \over n} + 4 ] ({4 \over n})$ $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [ 3 - {2i \over n} ] ({4 \over n})$ $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n [ {12 \over n} - {8i \over n^2} ]$ $= lim_{n \rightarrow \infty} (\Sigma_{i = 1}^n {12 \over n} - \Sigma_{i = 1}^n {8i \over n^2})$ $= lim_{n \rightarrow \infty} (12 -{8\over n^2}\Sigma_{i = 1}^n i)$ $= lim_{n \rightarrow \infty} (12 - {8\over n^2} {n(n+1) \over 2})$ $= lim_{n \rightarrow \infty} (12 - {4n^2+4n \over n^2})$ $= lim_{n \rightarrow \infty} (12 - 4 - {4 \over n})$ = 8 \vfill Show them Gauss's derivation: ~~ 1~ + ~2~~~ + ... + ~n-1~ + n ~~ n~ + n-1~ + ... + ~~2~~~ + 1 ------------------------------------------------------- n+1 + n+1 + ... + n+1 + n+1= n(n+1) Thus $\Sigma_{i = 1}^n i = {n(n+1) \over 2}$ \eject 5.4) Indefinite integral: $\int f(x) dx =$ anti-derivative of $f$. I.e, $\int f(x) dx = F(x)$ where $F'(x) = f(x)$ Ex: 1.) $\int x^3 dx =$ 2.) $\int [3x^4 + 2 + {3 \over x} + cos(x)] dx =$ 5.5) Integration by substitution If $F(x) = ln|x^2 - x|$, then by chain rule $F'(x) = {1 \over x^2 - x}(2x - 1) = {2x - 1 \over x^2 - x} $ Thus $\int {2x - 1 \over x^2 - x} dx = $ How do you recognize derivative when chain rule involved? u -substition $\int {2x - 1 \over x^2 - x}dx = \int {du \over u} = \int {1 \over u}du = ln|u| + C =ln| x^2 - x| + C $ Let $u = x^2 - x$, then $du = 2x - 1$ \end $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(a + {(b - a)i \over n} ) ({b-a \over n}) $ $= lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(a + {(b - a)i \over n} ) ({b-a \over n}) $ HW11 5.2) 18, 21, 23, 24, 30, 34, 35, 38, 39, 49, 50, 53 5.5) 8, 9, 11, 13, 16, 21, 28, 31, 36, 41, 42 and 5.3) 3, 7-10, 13-16,19, 37, 38, 61, 62 HW12 5.5) 56, 57, 61, 64, 66, 76 HW 13: 5.4) 23, 45, 47, 50, 54 6.1) 9, 19 HW 14: 6.1) 24, 28, 41 6.2) 31-36 all 6.3) 22, 26 Recommended 6.3) 21-26 all WRITE QUIZ