\input epsf \input graphicx %%\input ../../PAPERS/GOLD/psfig \magnification 2000 \vsize 9.5 truein \voffset -0.3truein \hoffset -0.3truein \hsize 6.9 truein \nopagenumbers \parskip=8pt \parindent= 0pt \def\u{\vskip -5pt} \def\v{\vskip 2.2in} \def\w{\vskip 7pt} \def\z{\vskip 1.2in} Find the area under the curve $f(x) = -{1 \over 2}x + 4$, above the $x-$axis and between $x = 2$ and $x = 6$. \includegraphics[width=48ex]{graphint1} Method 1: In this case our function is very simple, so we can determine the area without calculus: \vskip .7in \eject Method 2: Estimate using rectangles. \u Inscribed rectangles with $\Delta x = 1$: \includegraphics[width=48ex]{graphint} \vskip .9in $f(3)(1) + f(4)(1) + f(5)(1) + f(6)(1)$ = $= [-{1 \over 2}(3) + 4](1) + [-{1 \over 2}(4) + 4](1)$ \rightline{$ + [-{1 \over 2}(5) + 4](1) + [-{1 \over 2}(6) + 4](1)$} = ${5 \over 2} (1) + 2(1) + {3 \over 2} (1) + 1(1)$ = 7 \eject Inscribed rectangles with $\Delta x = {1\over 2}$: \includegraphics[width=48ex]{graphint} \vskip .7in $f({5 \over 2})({1\over 2}) + f(3)({1\over 2}) + f({7 \over 2})({1\over 2}) + f(4)({1\over 2})$ \vskip 5pt \rightline{$ + f({9 \over 2})({1\over 2}) + f(5)({1\over 2}) + f({11 \over 2})({1\over 2}) + f(6)({1\over 2}) $ } $= [-{1 \over 2}({5 \over 2}) + 4]({1\over 2}) + [-{1 \over 2}(3) + 4]({1\over 2}) + [-{1 \over 2}({7 \over 2}) + 4]({1\over 2}) $ $+ ~[-{1 \over 2}(4) + 4]({1\over 2}) + [-{1 \over 2}({9 \over 2}) + 4]({1\over 2})$ $ + ~ [-{1 \over 2}(5) + 4]({1\over 2})$ + $ [-{1 \over 2}({11 \over 2}) + 4]({1\over 2}) + [-{1 \over 2}(6) + 4]({1\over 2})$ = $ {11 \over 4} ({1\over 2}) + {5 \over 2} ({1\over 2}) + {9 \over 4} ({1\over 2})+ {2}({1\over 2}) + {7 \over 4} ({1\over 2}) + {3 \over 2}({1\over 2}) + {5 \over 4} ({1\over 2}) + 1({1\over 2})$ $= {15 \over 2}$ Inscribed rectangles with $\Delta x = {6 - 2\over n} ={4 \over n}$: \includegraphics[width=48ex]{graphint} \eject Circumscribed rectangles with $\Delta x = 1$: \includegraphics[width=48ex]{graphint} \vskip .9in $f(2)(1) + f(3)(1) + f(4)(1) + f(5)(1) $ = $= [-{1 \over 2}(2) + 4](1) + [-{1 \over 2}(3) + 4](1)$ \rightline{$ + [-{1 \over 2}(4) + 4](1) + [-{1 \over 2}(5) + 4](1)$} = $3 + {5 \over 2} (1) + 2(1) + {3 \over 2} (1)$ = 9 \eject %%Circumscribed rectangles with $\Delta x = {6-2 \over n} = {4 \over n}$: \vskip .9in Defn: $\int_a^b f(x) dx = lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(x_i) \Delta x$ If $f$ is continuous, can use inscribed rectangles, circumscribed rectangles, all left-hand endpoints, all right-hand endpoints, or all midpoints. If $\Delta x = {b-a \over n} $ and if right-hand endpoints are used, then $x_i = a + i \Delta x = a + {(b - a)i \over n}$ \vskip 5pt \centerline{$\int_a^b f(x) dx = lim_{n \rightarrow \infty} \Sigma_{i = 1}^n f(a + {(b - a)i \over n} ) ({b-a \over n}) $} %%$\int_2^6 [-{1 \over 2}x + 4] dx = $ \vfill Properties of the definite integral ${\int_a^a}f(x)dx = 0$ ${\int_a^b}f(x)dx = - {\int_b^a}f(x)dx$ {$ {\int_a^b}kf(x)dx =k {\int_a^b}f(x)dx$} {$ {\int_a^b}(f_1 + f_2)(x)dx = {\int_a^b}f_1(x)dx + {\int_a^b}f_2(x)dx$} $ {\int_a^c}f(x)dx = {\int_a^b}f(x)dx + {\int_b^c}f(x)dx$ If $f_1(x) \leq f_2(x)$, then $ {\int_a^b}f_1(x)dx \leq {\int_a^b}f_2(x)dx$ If $m \leq f(x) \leq M$ then $m(b-a) \leq {\int_a^b}f(x)dx \leq M(b-a)$ \eject Estimate the distance traveled between $t = 2$ and $t = 6$ if the velocity is given by the function $f(t) = -{1 \over 2}t + 4$. Estimate using inscribed rectangles with $\Delta t = 1$: \includegraphics[width=48ex]{graphint} \vskip .9in $f(3)(1) + f(4)(1) + f(5)(1) + f(6)(1)$ = $= [-{1 \over 2}(3) + 4](1) + [-{1 \over 2}(4) + 4](1)$ \rightline{$ + [-{1 \over 2}(5) + 4](1) + [-{1 \over 2}(6) + 4](1)$} = ${5 \over 2} (1) + 2(1) + {3 \over 2} (1) + 1(1)$ = 7 \eject Find the distance traveled between $t = 2$ and $t = 6$ if the velocity is given by the function $f(t) = -{1 \over 2}t + 4$. \includegraphics[width=48ex]{graphint1} Method 1: In this case our function is very simple, so we can determine the area without calculus: \vskip .7in \end