Section 4.2

Mean Value Theorem: Suppose

1.) f continuous on $[a, b]$
2.) f differentiable on (a, b)

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Applications of MVT (including Rolle's)
Lemma: If $f^{\prime}(x)=0$ for all $x \in[a, b]$, then $f(x)=c$ for some constant c and for all $x \in[a, b]$.

Proof:
Claim: $f(x)=f(a)$ for all $x \in[a, b]$
Let $x \in[a, b]$.
Since f^{\prime} exists on $[a, b], f$ is differentiable on $[a, b]$. Hence f is also continuous on $[a, b]$.

Thus by MVT, there exists $c \in(a, x)$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(a)}{x-a}
$$

Since $f^{\prime}(c)=0,0=\frac{f(x)-f(a)}{x-a}$ and thus $0=f(x)-f(a)$.
Hence $f(x)=f(a)$.
Cor: If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in[a, b]$, then $f(x)=g(x)+c$ for some constant c and for all $x \in[a, b]$.

