Section 4.2

Mean Value Theorem: Suppose

1.) f continuous on [a, b]

2.) f differentiable on (a, b)

Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Applications of MVT (including Rolle's)

Lemma: If f'(x) = 0 for all $x \in [a, b]$, then f(x) = c for some constant c and for all $x \in [a, b]$.

Proof:

Claim:
$$f(x) = f(a)$$
 for all $x \in [a, b]$
Let $x \in [a, b]$.

Since f' exists on [a, b], f is differentiable on [a, b]. Hence f is also continuous on [a, b].

Thus by MVT, there exists $c \in (a, x)$ such that

$$f'(c) = \frac{f(x) - f(a)}{x - a}$$

Since
$$f'(c) = 0$$
, $0 = \frac{f(x) - f(a)}{x - a}$ and thus $0 = f(x) - f(a)$.
Hence $f(x) = f(a)$.

Cor: If f'(x) = g'(x) for all $x \in [a, b]$, then f(x) = g(x) + c for some constant c and for all $x \in [a, b]$.