\input epsf \input graphicx \magnification 1300 \vsize 10truein \nopagenumbers \parskip 10pt \parindent 0 pt Find the following for $f(x) = x^3 - 3x^2 + 33$ (if they exist; if they don't exist, state so). Use this information to graph $f$. Note $f'(x) = {3x^2 - 6x}$, $f''(x) = {6x - 6}$, $f(-2) = 13$, $f(-3) = -21$ %%Is $f$ even, odd, periodic? What is the domain and range of $f$? \vskip -2pt [1.5] 1a.) critical numbers: $\underline{0, 2}$ [1.5] 1b.) local maximum(s) occur at $x = \underline{0}$ [1.5] 1c.) local minimum(s) occur at $x = \underline{2}$ [1.5] 1d.) The global maximum of $f$ on the interval [0, 5] is $\underline{83}$ and occurs at $x = \underline{5}$ [1.5] 1e.) The global minimum of $f$ on the interval [0, 5] is $\underline{29}$ and occurs at $x = \underline{2}$ [1.5] 1f.) Inflection point(s) occur at $x = \underline{1}$ [1.5] 1g.) $f$ increasing on the intervals $\underline{(-\infty, 0) \cup (2, +\infty)}$ [1.5] 1h.) $f$ decreasing on the intervals $\underline{(0, 2)}$ [1.5] 1i.) $f$ is concave up on the intervals $\underline{(1, +\infty)}$ [1.5] 1j.) $f$ is concave down on the intervals$\underline{(-\infty, 1)}$ [1.5] 1k.) Equation(s) of vertical asymptote(s)$\underline{none}$ [4] 1l.) Equation(s) of horizontal and/or slant asymptote(s)$\underline{none}$ \vskip -4pt [4.5] 1m.) Graph $f$ \vskip -8pt \includegraphics[width=48ex]{graphtr2} \eject $f(x) = x^3 - 3x^2 + 33$ $f'(x) = {3x^2 - 6x} = 3x(x - 2) = 0 $ or DNE, critical points: $x = 0, 2$ Check increasing/decreasing between critical points (f'(x) = 0, DNE) and singleton points not in domain (where function could change between increasing/decreasing). \vskip 100pt $f''(x) = {6x - 6} = 0 $ or DNE, so possible inflection point: $x = 1$ Check concave up/down between possible inflection points (f''(x) = 0, DNE) and singleton points not in domain (where function could change between concave up/down). \end