\input epsf \input graphicx \magnification 1300 \vsize 10truein \nopagenumbers \parskip 10pt \parindent 0 pt Find the following for $f(x) = e^{-x^2} + 1$ (if they exist; if they don't exist, state so). Use this information to graph $f$. Note $f'(x) = -2x e^{-x^2}$, $f''(x) = 2 e^{-x^2}[2x^2 - 1]$ Is $f$ even, odd, periodic? What is the domain and range of $f$? \vskip -2pt [1.5] 1a.) critical numbers: $\underline{\hskip 1.5in}$ [1.5] 1b.) local maximum(s) occur at $x = \underline{\hskip 1.5in}$ [1.5] 1c.) local minimum(s) occur at $x = \underline{\hskip 1.5in}$ [1.5] 1d.) The global maximum of $f$ on the interval [0, 5] is $\underline{\hskip .5in}$ and occurs at $x = \underline{\hskip 1in}$ [1.5] 1e.) The global minimum of $f$ on the interval [0, 5] is $\underline{\hskip .5in}$ and occurs at $x = \underline{\hskip 1in}$ [1.5] 1f.) Inflection point(s) occur at $x = \underline{\hskip 1.5in}$ [1.5] 1g.) $f$ increasing on the intervals $\underline{\hskip 1.5in}$ [1.5] 1h.) $f$ decreasing on the intervals $\underline{\hskip 1.5in}$ [1.5] 1i.) $f$ is concave up on the intervals $\underline{\hskip 1.5in}$ [1.5] 1j.) $f$ is concave down on the intervals$\underline{\hskip 1.5in}$ [1.5] 1k.) Equation(s) of vertical asymptote(s)$\underline{\hskip 1.5in}$ [4] 1l.) Equation(s) of horizontal and/or slant asymptote(s)$\underline{\hskip 1.5in}$ \vskip -4pt [4.5] 1m.) Graph $f$ \vskip -8pt \includegraphics[width=36ex]{grapht} \end $f(x) = x^3 - 3x^2 + 33$ $f'(x) = {3x^2 - 6x} = 3x(x - 2) = 0 $ or DNE, critical points: $x = 0, 2$ Check increasing/decreasing between critical points, points of discontinuity, and singleton points not in domain (where function could change between increasing/decreasing). \vskip 100pt $f''(x) = {6x - 6} = 0 $ or DNE, so possible inflection point: $x = 1$ Check concave up/down between possible inflection points, points of discontinuity, and singleton points not in domain (where function could change between concave up/down). \end