Find the following for \(f(x) = \frac{x^2+3x}{x-1} = \frac{x(x+3)}{x-1} \) (if they exist; if they don’t exist, state so). Use this information to graph \(f \). Note \(f'(x) = \frac{(x-3)(x+1)}{(x-1)^2}, f''(x) = \frac{-4}{(x-1)^3}. \)

Is \(f \) even, odd, periodic? What is the domain and range of \(f \)?

[1.5] 1a.) critical numbers: ________________

[1.5] 1b.) local maximum(s) occur at \(x = \) ________________

[1.5] 1c.) local minimum(s) occur at \(x = \) ________________

[1.5] 1d.) The global maximum of \(f \) on the interval \([0, 5]\) is ______ and occurs at \(x = \) ________________

[1.5] 1e.) The global minimum of \(f \) on the interval \([0, 5]\) is ______ and occurs at \(x = \) ________________

[1.5] 1f.) Infection point(s) occur at \(x = \) ________________

[1.5] 1g.) \(f \) increasing on the intervals ________________

[1.5] 1h.) \(f \) decreasing on the intervals ________________

[1.5] 1i.) \(f \) is concave up on the intervals ________________

[1.5] 1j.) \(f \) is concave down on the intervals ________________

[1.5] 1k.) Equation(s) of vertical asymptote(s) ________________

[4] 1l.) Equation(s) of horizontal and/or slant asymptote(s) ________________

[4.5] 1m.) Graph \(f \)