\nopagenumbers \magnification 1800 \vsize 10truein \voffset -.4truein \parskip 4pt \parindent 0pt \hsize 7truein \hoffset -.4truein Indeterminate forms: $``\infty - \infty"$ \hfil $``\infty \cdot 0"$ \hfil $``{\infty \over \infty}"$ \hfil $``{0 \over 0}"$ \vskip 10pt \centerline{\hfil $``{\infty^0}"$ \hfil $``{0^0}"$ \hfil $``{1^\infty}"$ \hfil} \vskip 10pt L'Hospital's Rule: Suppose $f'$ and $g'$ exist, $g'(x) \not = 0$ near $a$ except possibly at $a$ where $a \in {\cal R} \cap \{+\infty, -\infty\}$ and if either 1.) $lim_{x \rightarrow a} f(x) = lim_{x \rightarrow a} g(x) = 0$ or 2.) $lim_{x \rightarrow a} f(x) = \pm \infty$ and $lim_{x \rightarrow a} g(x) = \pm \infty$ and if $lim_{x \rightarrow a} {f'(x) \over g'(x)}$ exists, then \vskip 5pt \centerline{$lim_{x \rightarrow a} {f(x) \over g(x)} = lim_{x \rightarrow a} {f'(x) \over g'(x)}$ } \vskip 10pt \hrule \vskip 10pt Ex 1) $lim_{x \rightarrow +\infty} {-2x^2 + 3 \over 5x^2 + 4x}$ Old method: $lim_{x \rightarrow +\infty} {-2x^2 + 3 \over 5x^2 + 4x}$ = $lim_{x \rightarrow +\infty} {x^2(-2 + {3 \over x^2}) \over x^2(5 + {4 \over x})} =$ New method: $lim_{x \rightarrow +\infty} {-2x^2 + 3 \over 5x^2 + 4x}$ \vfill \vfill $lim_{x \rightarrow 1} {1 - x + ln(x) \over x^3 - 3x + 2}$ \vfill \end