\nopagenumbers \magnification 1900 \vsize 9.5truein \voffset -.4truein \parskip 9pt \parindent 0pt \hsize 7truein \hoffset -.4truein Mean Value Theorem: Suppose \hfil \break 1.) $f$ continuous on $[a, b]$ \hfil \break 2.) $f$ differentiable on $(a, b)$ \vskip -5pt Then there exists $c \in (a, b)$ such that $f'(c) = {f(b) - f(a) \over b - a}$ Ex 3: If $f'(x) = 0$ for all $x \in (a, b)$, then $f(x) = c$ for some constant $c$. Proof: Take $x_0 \in (a, b)$ Show $f(x) = f(x_0)$ for all $x \in (a, b)$ [i.e., $c = f(x_0)$]. Without loss of generality, assume $x > x_0$. \hfil \break (proof is similar when $x < x_0$). $f$ is continuous on $[x_0, x]$. \hfil \break $f$ is differentiable on $(x_0, x).$ By MVT, there exists $c \in (x_0, x)$ such that ${f(x) - f(x_0) \over x - x_0} = f'(c) = 0.$ Thus $f(x) - f(x_0) = 0$. Hence $f(x) = f(x_0).$ Ex 4: If $f'(x) = g'(x)$ for all $x \in (a, b)$, then $f(x) = g(x) + c$ for some constant $c$. Proof: $f'(x) = g'(x)$ implies $(f - g)'(x) = f'(x) - g'(x) = 0.$ Thus $(f - g)(x) = f(x) - g(x) = c$ for some constant $c$. \hfil \break Thus $f(x) = g(x) + c.$ \eject The Fundamental Theorem of Calculus: Suppose $f$ continuous on $[a, b]$. 1.) If $g(x) = \int_a^x f(t) dt$, then $g'(x) = f(x)$. 2.) $\int_a^b f(t) dt = F(b) - F(a)$ where $F$ is any antiderivative of $f$, that is $F' = f$. \end \vfill