Mean Value Theorem: Suppose 1.) f continuous on [a, b]2.) f differentiable on (a, b)

Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Ex 3: If f'(x) = 0 for all $x \in (a, b)$, then f(x) = c for some constant c.

Proof: Take $x_0 \in (a, b)$

Show $f(x) = f(x_0)$ for all $x \in (a, b)$ [i.e., $c = f(x_0)$].

Without loss of generality, assume $x > x_0$. (proof is similar when $x < x_0$).

f is continuous on $[x_0, x]$. f is differentiable on (x_0, x) .

By MVT, there exists $c \in (x_0, x)$ such that

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(c) = 0.$$

Thus $f(x) - f(x_0) = 0$. Hence $f(x) = f(x_0)$.

Ex 4: If f'(x) = g'(x) for all $x \in (a, b)$, then f(x) = g(x) + c for some constant c.

Proof: f'(x) = g'(x) implies (f - g)'(x) = f'(x) - g'(x) = 0. Thus (f - g)(x) = f(x) - g(x) = c for some constant c. Thus f(x) = g(x) + c. The Fundamental Theorem of Calculus: Suppose f continuous on [a, b].

1.) If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).

2.) $\int_{a}^{b} f(t)dt = F(b) - F(a)$ where F is any antiderivative of f, that is F' = f.