Mean Value Theorem: Suppose
1.) f continuous on $[a, b]$
2.) f differentiable on (a, b)

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Ex 3: If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)=c$ for some constant c.

Proof: Take $x_{0} \in(a, b)$
Show $f(x)=f\left(x_{0}\right)$ for all $x \in(a, b)$ [i.e., $c=f\left(x_{0}\right)$].
Without loss of generality, assume $x>x_{0}$. (proof is similar when $x<x_{0}$).
f is continuous on $\left[x_{0}, x\right]$.
f is differentiable on $\left(x_{0}, x\right)$.
By MVT, there exists $c \in\left(x_{0}, x\right)$ such that
$\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}(c)=0$.
Thus $f(x)-f\left(x_{0}\right)=0$. Hence $f(x)=f\left(x_{0}\right)$.
Ex 4: If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then $f(x)=g(x)+c$ for some constant c.

Proof: $f^{\prime}(x)=g^{\prime}(x)$ implies $(f-g)^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$.
Thus $(f-g)(x)=f(x)-g(x)=c$ for some constant c.
Thus $f(x)=g(x)+c$.

The Fundamental Theorem of Calculus: Suppose f continuous on $[a, b]$.
1.) If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2.) $\int_{a}^{b} f(t) d t=F(b)-F(a)$ where F is any antiderivative of f, that is $F^{\prime}=f$.

