\nopagenumbers \magnification 1800 \vsize 10truein \voffset -.4truein \parskip 4pt \parindent 0pt \hsize 7truein \hoffset -.4truein Ex 3: If $f'(x) = 0$ for all $x \in (a, b)$, then $f(x) = c$ for some constant $c$. \vfill \vfill Ex 4: If $f'(x) = g'(x)$ for all $x \in (a, b)$, then $f(x) = g(x) + c$ for some constant $c$. \vfill \eject {\it Increasing/Decreasing Test}: \hfil \break If $f'(x) > 0$ for all $x \in (a, b)$, then $f$ is increasing on $(a, b)$ If $f'(x) < 0$ for all $x \in (a, b)$, then $f$ is decreasing on $(a, b)$ {\it First derivative test:} \hfil \break Suppose $c$ is a critical number of a continuous function $f$, then \vfil Defn: $f$ is {\bf concave down} if the graph of $f$ \hfil \break lies below the tangent lines to $f$. Defn: $f$ is {\bf concave up} if the graph of $f$ \hfil \break lies above the tangent lines to $f$. {\it Concavity Test}: \hfil \break If $f''(x) > 0$ for all $x \in (a, b)$, then $f$ is concave upward on $(a, b)$. If $f''(x) < 0$ for all $x \in (a, b)$, then $f$ is concave down on $(a, b)$. Defn: The point $(x_0, y_0)$ is an {\bf inflection point} if $f$ is continuous at $x_0$ and if the concavity changes at $x_0$ \vfil {\it Second derivative test:} If $f''$ continuous at $c$, then \hfil \break If $f'(c) = 0$ and $f''(c) > 0$, then $f$ has a local minimum at $c$. \vfil If $f'(c) = 0$ and $f''(c) < 0$, then $f$ has a local maximum at $c$. \vfil If $f'(c) = 0$ and $f''(c) = 0$, second derivative test gives no info. \eject Converses are not true: Increasing/Decreasing Test If $f'(x) > 0$ for all $x \in (a, b)$, then $f$ is increasing on $(a, b)$ $f$ increasing on $(a, b)$ does not imply $f'(x) >0$ for all $x \in (a, b)$. Ex: \vskip 30pt If $f'(x) < 0$ for all $x \in (a, b)$, then $f$ is decreasing on $(a, b)$ $f$ decreasing on $(a, b)$ does not imply $f'(x) < 0$ for all $x \in (a, b)$. Ex: \vskip 30pt {\it Concavity Test}: \hfil \break If $f''(x) > 0$ for all $x \in (a, b)$, then $f$ is concave upward on $(a, b)$. $f$ concave upward on $(a, b)$ does not imply $f''(x) > 0$ for all $x \in (a, b)$. Ex: \vskip 30pt If $f''(x) < 0$ for all $x \in (a, b)$, then $f$ is concave down on $(a, b)$. $f$ concave downward on $(a, b)$ does not imply $f''(x) < 0$ for all $x \in (a, b)$. Ex: \vskip 30pt \end \end