Find the following for \(f(x) = 5x^{\frac{2}{5}} - x^{\frac{5}{3}} \) (if they exist; if they don’t exist, state so). Use this information to graph \(f \).

[1.5] 1a.) critical numbers: ________________

[1.5] 1b.) local maximum(s) occur at \(x = \) ________________

[1.5] 1c.) local minimum(s) occur at \(x = \) ________________

[1.5] 1d.) The global maximum of \(f \) on the interval [0, 5] is ______ and occurs at \(x = \) ________________

[1.5] 1e.) The global minimum of \(f \) on the interval [0, 5] is ______ and occurs at \(x = \) ________________

[1.5] 1f.) Infection point(s) occur at \(x = \) ________________

[1.5] 1g.) \(f \) increasing on the intervals __________________

[1.5] 1h.) \(f \) decreasing on the intervals __________________

[1.5] 1i.) \(f \) is concave up on the intervals __________________

[1.5] 1j.) \(f \) is concave up on the intervals __________________

[1.5] 1k.) Equation(s) of vertical asymptote(s) __________________

[1.5] 1l.) Equation(s) of horizontal asymptote(s) __________________

[1.5] 1m.) Equation(s) of slant asymptote(s) __________________

[4.5] 1m.) Graph \(f \)