f has an absolute maximum (=global maximum) at c if $f(c) \geq f(x)$ for all x in domain of f.
$f(c)$ is the maximum value of f.
f has an absolute minimum (=global minimum) at d if $f(d) \leq f(x)$ for all x in domain of f.
$f(d)$ is the minimum value of f.
$f(c)$ and $f(d)$ are the extreme values of f.
f has a local maximum at c if $f(c) \geq f(x)$ for all x near c.
f has a local minimum at d if $f(d) \leq f(x)$ for all x near c.
Ex 1:

Ex 2: $f(x)=3$
c is a critical point of f if $f^{\prime}(c)=0$ or if $f^{\prime}(c)$ DNE.
If a local max or local min occurs at c, then c is a critical point of f (Note this is not an iff. I.e., the converse is not true).

Extreme Value Thm: If f continuous on $[a, b]$, then f has an absolute maximum, $f(c)$, and an absolute minimum, $f(d)$, for some $c, d \in[a, b]$.

Extreme values must occur either at critical values $\left(f^{\prime}(x)=0\right.$ or DNE) or at endpoints.

Ex: Let $f(x)=x^{3}$. Find absolute minimum/maximum on the interval $[-2,3]$.

Ex: Let $f(x)=x^{3}$. Find absolute minimum/maximum on the interval $(-2,3)$ (if they exist).

Ex: Let $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & x \neq 0 \\ 0 & 0\end{array}\right.$. Find absolute minimum/maximum on the interval $[-2,3]$ (if they exist).

Ex: Let $f(x)=(x-2)^{\frac{2}{3}}$. Find absolute minimum/maximum on the interval [1,5].

Ex: Let $g(x)=x^{3}+3 x^{2}+1$. Find absolute minimum/maximum on the interval $[-3,1]$.

Fermat's Thm: If a local max or local min occurs at c, then c is a critical point of f.

Proof:

