Theorem: If \(f(x) \leq g(x) \) near \(a \) (except possibly at \(a \)) and if \(\lim_{x\to a} f(x) \) and \(\lim_{x\to a} g(x) \) exist, then
\[
\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)
\]

Squeeze theorem:
If \(f(x) \leq g(x) \leq h(x) \) near \(a \) (except possibly at \(a \)) and if \(\lim_{x\to a} f(x) = L \) and \(\lim_{x\to a} h(x) = L \), then
\[
\lim_{x\to a} g(x) = L
\]

Example: \(g(x) = x \sin \frac{1}{x} \)
Defn: $\lim_{x \to a} f(x) = L$ if

x close to a (except possibly at a) implies $f(x)$ is close to L.
Defn: $\lim_{x \to a} f(x) = L$ if

x close to a (except possibly at a) implies $f(x)$ is close to L.
Defn: \(\lim_{x \to a} f(x) = L \) if
for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that
\(0 < |x - a| < \delta \) implies \(|f(x) - L| < \epsilon \)

Show \(\lim_{x \to 1} 2 = \)
Defn: \(\lim_{x \to a} f(x) = L \) if
for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that
\(0 < |x - a| < \delta \) implies \(|f(x) - L| < \epsilon \)

Show \(\lim_{x \to 4} 2x + 3 = \)
Defn: $\lim_{x \to a^-} f(x) = L$ if

x close to a and $x < a$

implies $f(x)$ is close to L.

Defn: $\lim_{x \to a^+} f(x) = L$ if

x close to a and $x > a$

implies $f(x)$ is close to L.
Defn: $\lim_{x \to a} f(x) = \infty$ if

x close to a (except possibly at a)
implies $f(x)$ is large.

Defn: $\lim_{x \to a} f(x) = -\infty$ if

x close to a (except possibly at a)
implies $f(x)$ is negative and $|f(x)|$ is large.