Section 2.3

Theorem: If \(f(x) \leq g(x) \) near \(a \) (except possibly at \(a \)) and if \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist, then

\[
\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)
\]

Squeeze theorem:
If \(f(x) \leq g(x) \leq h(x) \) near \(a \) (except possibly at \(a \)) and if \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} h(x) = L \), then

\[
\lim_{x \to a} g(x) = L
\]

Example: \(g(x) = x \sin \frac{1}{x} \)

\[-|x| \leq x \sin \frac{1}{x} \leq |x|\]

\[
\lim_{x \to 0} (-|x|) = 0, \quad \lim_{x \to 0} (|x|) = 0.
\]

Hence, \(\lim_{x \to 0} (x \sin \frac{1}{x}) = 0 \)

Section 2.4

Informal Defn: \(\lim_{x \to a} f(x) = L \) if \(x \) close to \(a \) (except possibly at \(a \)) implies \(f(x) \) is close to \(L \).

Formal Defn: \(\lim_{x \to a} f(x) = L \) if

For all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(0 < |x - a| < \delta \) implies \(|f(x) - L| < \epsilon \).
Formal Defn: \(\lim_{x \to a} f(x) = L \) if

For all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that

\[0 < |x - a| < \delta \implies |f(x) - L| < \epsilon. \]

Proof:

Let \(\epsilon > 0 \). Choose \(\delta = \boxed{\text{____}} \). Note \(\delta = \boxed{\text{____}} > 0 \).

Suppose \(0 < |x - a| < \delta \).

Claim: \(|f(x) - L| < \epsilon. \)

Defn: \(\lim_{x \to a} f(x) = L \) if

for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that

\[0 < |x - a| < \delta \implies |f(x) - L| < \epsilon. \]

Show \(\lim_{x \to 1} 2 = \)

<table>
<thead>
<tr>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>
Defn: \(\lim_{x \to a} f(x) = L \) if for all \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that \(0 < |x - a| < \delta \) implies \(|f(x) - L| < \varepsilon \).

Show \(\lim_{x \to 4} 2x + 3 = \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defn: \(\lim_{x \to a^-} f(x) = L \) if \(x \) close to \(a \) and \(x < a \) implies \(f(x) \) is close to \(L \).

Defn: \(\lim_{x \to a^+} f(x) = L \) if \(x \) close to \(a \) and \(x > a \) implies \(f(x) \) is close to \(L \).
Defn: \(\lim_{x \to a} f(x) = \infty \) if

\(x \) close to \(a \) (except possibly at \(a \))
implies \(f(x) \) is large.

Defn: \(\lim_{x \to a} f(x) = -\infty \) if

\(x \) close to \(a \) (except possibly at \(a \))
implies \(f(x) \) is negative and \(|f(x)| \) is large.

Section 2.5

Defn: \(f \) is continuous at \(a \) if \(\lim_{x \to a} f(x) = f(a) \)
(i.e., if \(\lim_{x \to a} f(x) = f(\lim_{x \to a} x) \))

Examples:

Ex: Polynomial, rational, root, trigonometric,
inverse trigonometric, exponential, logarithmic
functions are continuous functions.

Read left and right continuity
If \(f, g \) continuous at \(a, c \in \mathbb{R} \), then \(f + g, fg, cf, f/g \) (if \(g(a) \neq 0 \)) are continuous.

If \(g \) continuous at \(a \) and \(f \) continuous at \(g(a) \), then \(f \circ g \) continuous at \(a \).

Ex: \(\lim_{x \to 0} \frac{x^2-e^x}{\cos(x)} = \)

Intermediate value theorem: Suppose \(f \) continuous on \([a,b]\), \(f(a) \neq f(b) \) and \(n \) is between \(f(a) \) and \(f(b) \), then there exists \(c \in (a,b) \) such that \(f(c) = N \).

Example: Show that \(x^2 - 7x + 1 \) has a root between 0 and 1.

Section 2.3: To find vertical asymptotes, find all \(a \in \mathbb{R} \) such that
\(lim_{x \to a^-} f(x) = \pm \infty \) and/or \(lim_{x \to a^+} f(x) = \pm \infty \)

Ex: \(f(x) = \frac{1}{(x+2)(x-3)^2} \)

Section 2.6: Horizontal asymptotes/limits at infinity

To find horizontal asymptotes:
calculate \(lim_{x \to +\infty} f(x) \) and \(lim_{x \to -\infty} f(x) \)

IF \(lim_{x \to +\infty} f(x) = L \) where \(L \) is a finite real number, then \(y = L \) is a horizontal asymptote.

IF \(lim_{x \to -\infty} f(x) = K \) where \(K \) is a finite real number, then \(y = K \) is a horizontal asymptote.
Ex: \(f(x) = \frac{2x^3 - x^2 + 1}{8x^3 + x + 3} \)

\[\lim_{x \to +\infty} \frac{2x^3 - x^2 + 1}{8x^3 + x + 3} = \]

Ex: \(f(x) = \frac{x^2 + 1}{2x^3 + x^2 - 3} \)

\[\lim_{x \to +\infty} \frac{x^2 + 1}{2x^3 + x^2 - 3} = \]

Similarly, \(\lim_{x \to -\infty} \frac{x^2 + 1}{2x^3 + x^2 - 3} = \)

Horizontal asymptote(s):

Ex: \(f(x) = \frac{2x^5 + x^2 - 3}{x^2 + 1} \)

\[\lim_{x \to +\infty} \frac{2x^5 + x^2 - 3}{x^2 + 1} = \]

Similarly, \(\lim_{x \to -\infty} \frac{2x^5 + x^2 - 3}{x^2 + 1} = \)

Horizontal asymptote(s):
Ex: $f(x) = \frac{2x}{\sqrt{x^2 + 1}}$

$$\lim_{x \to +\infty} \frac{2x}{\sqrt{x^2 + 1}} =$$

Ex: $f(x) = x^2 - x^3$

$$\lim_{x \to +\infty} x^2 - x^3 =$$

$$\lim_{x \to -\infty} x^2 - x^3 =$$

Horizontal asymptote(s):

Ex: $f(x) = x^{\frac{2}{3}} - x$

$$\lim_{x \to +\infty} x^{\frac{2}{3}} - x =$$

$$\lim_{x \to -\infty} x^{\frac{2}{3}} - x =$$

Horizontal asymptote(s):