\magnification 2000 \parindent 0pt \parskip 12pt \pageno=1 \nopagenumbers \hsize 7.5truein \hoffset -0.35truein %%\voffset -0.1truein \vsize 9.5truein \def\u{\vskip -10pt} \def\v{\vskip 5pt} \def\s{\vskip -5pt} \def\r{\vskip -4pt} Suppose $c \in {\cal R}$ and suppose $lim_{x \rightarrow a} f(x)$ and $lim_{x \rightarrow a} g(x)$ exist. Then \s $lim_{x \rightarrow a} [f(x) + g(x)] $ = $lim_{x \rightarrow a} f(x)$ + $lim_{x \rightarrow a} g(x)$ $lim_{x \rightarrow a} [cf(x)] = $ $c ~lim_{x \rightarrow a} f(x)$ $lim_{x \rightarrow a} [f(x)g(x)] = $ $lim_{x \rightarrow a} f(x)$ $lim_{x \rightarrow a} g(x)$ $lim_{x \rightarrow a} {f(x) \over g(x)} = $ ${lim_{x \rightarrow a} f(x) \over lim_{x \rightarrow a} g(x)}$ if $lim_{x \rightarrow a} g(x) \not= 0$ Defn: $f$ is continuous at $a$ \hfil \break iff $lim_{x \rightarrow a} f(x) = f(lim_{x \rightarrow a} x) = $ If $f$ is continuous implies \centerline{$lim_{x \rightarrow a} f(g(x)) = f(lim_{x \rightarrow a}g(x))$ } Ex: $lim_{x \rightarrow 9} e^{\sqrt{x} } - 2\sqrt{x} + 4$ \eject $lim_{x \rightarrow 3} {x^2 - 1 \over x + 3}$ \vfill $lim_{x \rightarrow 3} {x^2 - 1 \over x - 3}$ \vfill $lim_{x \rightarrow 3} {(x^2 - 1)(x - 3)\over x - 3}$ \vfill $lim_{x \rightarrow 3} { x - 3 \over x^2 - 1 }$ \vfill $lim_{x \rightarrow 3} {(x-4)^2 \over x^5(x-8)^9(x - 3)^3}$ \vfill $lim_{x \rightarrow 3} {(x-4)^2(x - 3) \over x^5(x-8)^9(x - 3)^3}$ \eject Suppose $f(x) = \sqrt{x}$. Find $lim_{h \rightarrow 0} {f(x + h) - f(x) \over h}$ where $x > 0$ \end