Defn: M is an n-dimensional manifold (with boundary) if

1.) For all $x \in M$, there exists a neighborhood V_x such that V_x is homeomorphic to an open set in R^n or R_+^n

2.) M is T_2 and ...

Give an example of a topological space which satisfies (1), but is not T_2.

Answer: Friday’s Lecture.

M is a closed manifold if M is a compact manifold without boundary.

Wild knot:

Alexander horned sphere: see handout

To avoid such pathologies, we will work in the differentiable (C^∞) or piecewise linear (PL) category.
Examples of n-manifolds:

\[D^n = B^n = \{ x \in \mathbb{R}^n \mid ||x|| \leq 1 \} \]

\[S^n = \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \} = \partial B^{n+1} \]

\[P^n = S^n/(x \sim -x) \]

\[T^n = S^1 \times S^1 \times ... \times S^1 \]

Forming new manifolds from old manifolds:

If \(M \) is an \(m \)-manifold and \(N \) is an \(n \)-manifold, then \(M \times N \) is a \((m+n)\)-manifold.

If \(M \) is an \(m \)-manifold, then \(\partial M \) is an \((m-1)\)-manifold.

Suppose \(M \) and \(N \) are \(n \)-manifolds and \(f \) : a component of \(\partial M \rightarrow \) a component of \(\partial N \) is a homeomorphism, then

\[M \cup_f N = M \cup N/(x \sim f(x)) \]

In particular, \(M \# N = (M - B^n) \cup_i (N - B^n) \) where \(i : S^{n-1} \rightarrow S^{n-1} \).
\[F_g = \# T^2 = (S^2 - \cup_{i=1}^{2g} D^2) \cup (\cup_{i=1}^{g} A^2) \] where \(A^2 = \) annulus

\[N_g = \# P^2 = (S^2 - \cup_{i=1}^{g} D^2) \cup (\cup_{i=1}^{g} V^2) \] where \(V^2 = \) mobius band

Euler characteristic = \(\chi(M) = \) vertices - edges + faces - ...
\[= \Sigma_{i=0}^{\infty} (-1)^i \alpha_i(M) \] where \(\alpha_i(M) = \) number of \(i \) cells.
\[= \Sigma_{i=0}^{\infty} (-1)^i \beta_i(M) \] where \(\beta_i(M) = dim H_i(M) \)

\[\chi(M_1 \cup_F M_2) = \chi(M_1) + \chi(M_2) - \chi(F) \]

\[\chi(S^{2n-1}) = 0. \quad \chi(S^{2n}) = 2. \quad \chi(D^n) = 1. \]

If \(S \) is a surface (compact connected 2-manifold) consisting of disjoint disks with bands attached, then
\[\chi(S) = \# \text{ of disks} - \# \text{ of bands}. \]

\[\chi(T^2) = 0. \quad \chi(T^2 \# T^2) = -2, \quad \chi(F_g) = 2 - 2g \]
\[\chi(P^2) = 1. \quad \chi(P^2 \# P^2) = 0, \quad \chi(N_g) = 2 - g \]

Casson: "For three-dimensional topology, intuitive understanding is much more important than technical details."