1.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4\sqrt{x}}$,
then $f$ is an increasing function on $(0, \infty)$.
A) True
B) False
2.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x)
\sqrt{x}}$, then $f$ is an increasing function.
A) True
B) False
3.)
If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x^2)
\sqrt{x}}$, then $f$ is an increasing function.
A) True
B) False