1.) If $f$ is continuous, then on an appropriate domain, the initial value problem $y' = f'(t)$, $y(t_0) = y_0$ has a unique solution.

A) True                     B) False



2.) If $f$ is continuous, then on an appropriate domain, the initial value problem $y' = f'(t, y)$, $y(t_0) = y_0$ always has a unique solution.

A) True                     B) False



3.) The initial value problem $y' = y^\frac{1}{3}$, $y(2) = 0$ has three different solutions.

A) True                     B) False


4.) The initial value problem $y' = f'(t, y)$, $y(t_0) = y_0$ might not have a solution.

A) True                     B) False