1.) If $f$ is continuous, then
$\int_2^9 f(x)dx$ is a number
A) True
B) False
2.)
If $f$ is continuous, then $\int f(x)dx$ is a number
A) True
B) False
3.)
If $f$ is continuous, then $\int f(x)dx$ is a collection of functions of
the form $F(x) + C$ where $F'(x) = f(x)$.
A) True
B) False
4.)
If $f$ is continuous, then $\int f(x)dx$ is a collection of functions of
the form $F(x) + C$ where $f'(x) = F(x)$.
A) True
B) False
5.)
If $f$ is continuous for all real numbers, then there is a unique
function $F$ that satisfies
(i) $F'(x) = f(x)$ and (ii) $F(3) = 4$.
A) True
B) False
6.)
$\int_{-2}^2 x^4 dx = 0$
A) True
B) False
7.)
$\int_{-2}^2 x^3 dx =
2\int_{0}^2 x^3 dx$
A) True
B) False
8.) $\int_{-3}^4 e^x < 0$
A) True
B) False
9.) $\int_{-3}^4 e^{-x} > 0$
A) True
B) False
10.) $\int_{-3}^4 ln(x) < 0$
A) True
B) False
11.) $\int_{1}^4 ln(x) < 0$
A) True
B) False
12.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4\sqrt{x}}$,
then $f$ is a decreasing function on $(0, \infty)$.
A) True
B) False
13.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x)
\sqrt{x}}$, then $f$ is an increasing function on $(0, \infty)$.
A) True
B) False
14.)
If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x^2)
\sqrt{x}}$, then $f$ is an increasing function on (0, 1).
A) True
B) False
15.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x)
\sqrt{x}}$, then $f$ is an increasing function on $(1, \infty)$.
A) True
B) False
16.)
If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x^2)
\sqrt{x}}$, then $f$ is an decreasing function on (0, 1).
A) True
B) False