1.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4\sqrt{x}}$, then $f$ is an increasing function on $(0, \infty)$.

A) True                     B) False



2.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4\sqrt{-x}}$, then $f$ is an increasing function on $(-\infty, 0)$.

A) True                     B) False



3.) If the derivative of $f$ = $f'(x) = {\sqrt{x^2+3} \over e^x(x^2 + 1)}$, then $f$ is an increasing function.

A) True                     B) False