1.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4\sqrt{x}}$,
then $f$ is an increasing function on $(0, \infty)$.
A) True
B) False
2.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4\sqrt{-x}}$,
then $f$ is an increasing function on $(-\infty, 0)$.
A) True
B) False
3.) If the derivative of $f$ = $f'(x) = {\sqrt{x^2+3} \over e^x(x^2 +
1)}$,
then $f$ is an increasing function.
A) True
B) False