1.) Suppose that velocity at time $t$ = $v(t) = {1 \over x^2}$. $If v(1)
=
1$, then you can uniquely find the $s(t) = distance traveled at time $t$.
A) True
B) False
2.) If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x)
\sqrt{x}}$, then $f$ is an increasing function.
A) True
B) False
3.)
If the derivative of $f$ = $f'(x) = {e^x(x^2 + 1) \over 4ln(x^2)
\sqrt{x}}$, then $f$ is an increasing function.
A) True
B) False