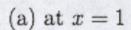
$$\lim_{x\to a} f(x) = f(a)$$
 if $f(a)$ is defined.

A) True

B) False

If y = f(t) represents the miles a car travels after t hours, then f'(t) is the velocity of that car.

A) True

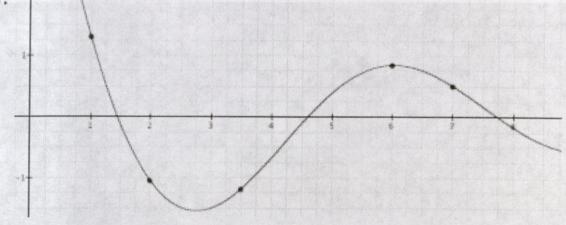

B) False

2.2.3 [P] You're trying to guess $\lim_{x\to 0} f(x)$. You plug in $x = 0.1, 0.01, 0.001, \dots$ and get f(x) = 0 for all these values. In fact, you're told that for all $n = 1, 2, \dots$, we have f(1), $f(\frac{1}{10^n}) = 0$.

True or False: Since the sequence 0.1, 0.01, 0.001, ... goes to 0, we know $\lim_{x\to 0} f(x) = 0$.

from: http://www.brandeis.edu/registrar/newstudent/docs/placement/calculus_test.pdf

7. The graph of a function f(x) is shown below. At which of the following points is the value of the derivative f'(x) biggest? \dagger



(b) at
$$x = 2$$

(c) at
$$x = 3.5$$

(d) at
$$x = 6$$

(e) at
$$x = 7$$

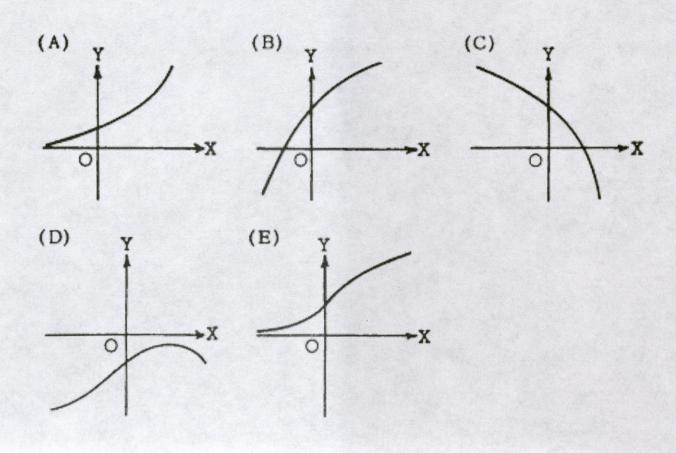
8. Consider again the function f(x) whose graph is shown in problem 7. At which points is the second derivative f''(x) negative?

(a) at
$$x = 2$$
 and $x = 3.5$

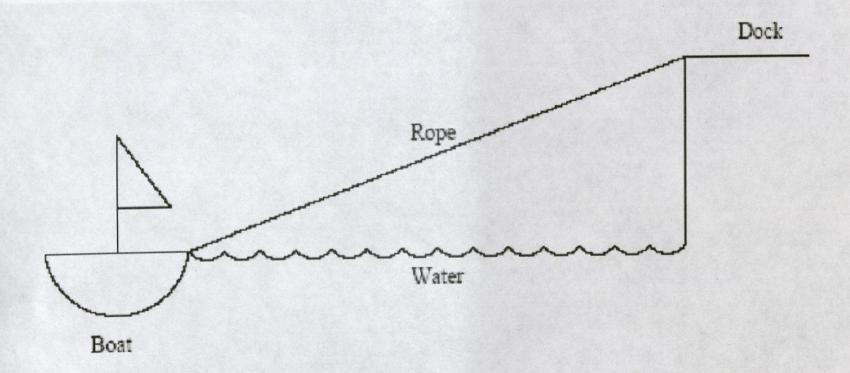
(b) at
$$x = 1$$
, $x = 2$ and $x = 3.5$

(c) at
$$x = 6$$
 only

(d) at
$$x = 7$$
 only

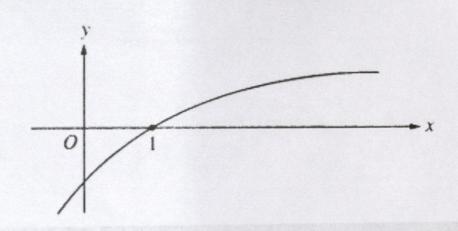

(e) at
$$x = 6$$
 and $x = 7$

From: http://www.math.cornell.edu/~GoodQuestions/JittMapleTA.pdf When we write $\lim_{x\to a} f(x) = \infty$ this means that the limit exists and is a really big number.


a.) True
b.) False

From: http://staff.4j.lane.edu/~windom/AP/ap%20multiple%20choice.pdf

If y is a function of x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of y = f(x)?



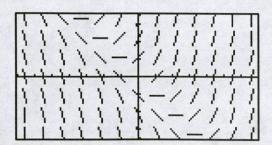
4.1.3 [P] A boat is drawn close to a dock by pulling in the rope at a constant rate. **True** or **False**. The closer the boat gets to the dock, the faster it is moving.

True or False.
$$\frac{d}{dx} \ln(\pi) = \frac{1}{\pi}$$

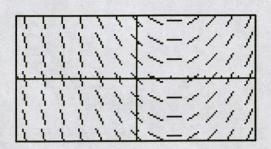
- 4.2.1 [Q] **True** or **False**. If f(x) is continuous on a closed interval, then if is enough to look at the points where f'(x) = 0 in order to find its absolute maxima and minima. Be prepared to justify your answer.
- 4.3.3 [Q] If f''(a) = 0, then f has an inflection point at a.

- 17. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?
 - (A) f(1) < f'(1) < f''(1)
 - (B) f(1) < f''(1) < f'(1)
 - (C) f'(1) < f(1) < f''(1)
 - (D) f''(1) < f(1) < f'(1)
 - (E) f''(1) < f'(1) < f(1)

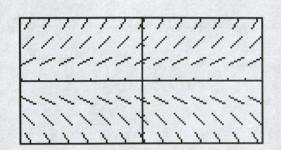
17 is from 1998 AP Calc AB http://staff.4j.lane.edu/ windom/AP/ap%20multiple %20choice.pdf

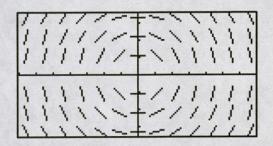

True/False

18.) If f is continuous, then f is differentiable. T


19.) If f is differentiable, then f is continuous. T

Match the slope fields with their differential equations.

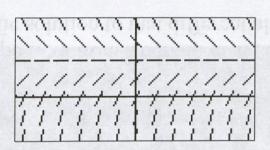

(A)


(B)

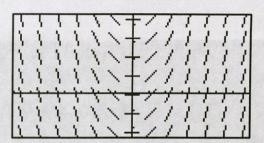
(C)

(D)

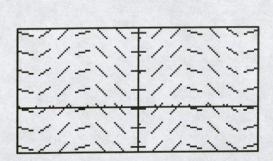
 $11. \ \frac{dy}{dx} = 0.5x - 1$

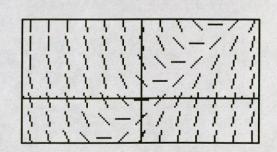

$$12. \ \frac{dy}{dx} = 0.5y$$

$$13. \ \frac{dy}{dx} = -\frac{x}{y}$$


$$14. \ \frac{dy}{dx} = x + y$$

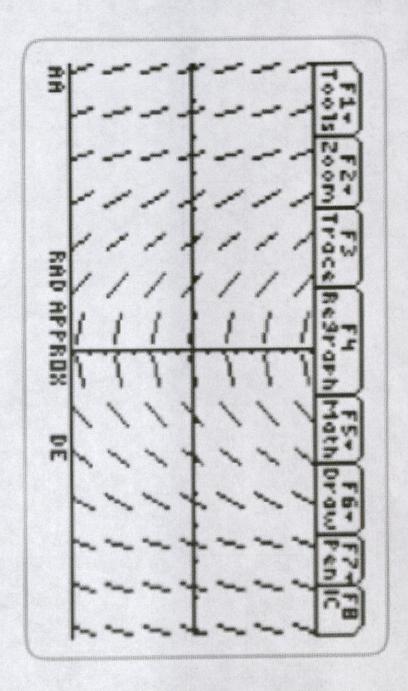
Match the slope fields with their differential equations.


(A)


(B)

(C)

(D)


$$7. \ \frac{dy}{dx} = \sin x$$

8.
$$\frac{dy}{dx} = x - y$$

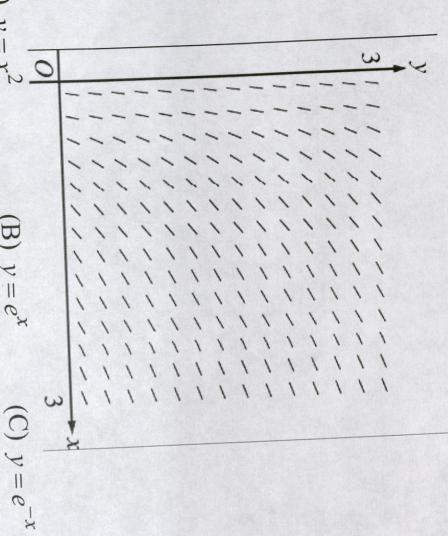
$$9. \frac{dy}{dx} = 2 - y$$

$$10. \ \frac{dy}{dx} = x$$

7. Which of the following could be a solution of field? the differential equation with the given slope

$$(A) y = x + 1$$

 $y = \ln(x+1)$


(B)
$$y = x^2 + 2$$

(E)
$$y = 2e^x$$

(C)
$$y = x^3 - 2$$

www.amscopub.com/%5Cimages%5Cfile%5CFile_8.jpg.pdf

From the May 2008 AP Calculus Course Description:

apcentral.collegeboard.com From: http:// ap08_calculus_slopefields_ /apc/public/repository/ worksheet.pdf

The slope field from a certain differential equation is shown above. Which of the following could be

(B) $y = e^x$

(D) $y = \cos x$

(E) $y = \ln x$

a specific solution to that differential equation?

(A)
$$y = x^2$$

(B)
$$y = e^x$$

(C)
$$y = e^{-x}$$

(D)
$$y = \cos x$$

(E)
$$y = \ln x$$