%%\input ../../PAPERS/GOLD/psfig \input epsf \input graphicx \magnification 2200 \vsize 9.5 truein \voffset 0.3truein \hsize 6.9 truein \hoffset -0.2truein \nopagenumbers \parskip=10pt \parindent= 0pt \def\u{\vskip 3.3in} \def\v{\vskip 2.2in} \def\w{\vskip 7pt} \def\z{\vskip 1.2in} %%\vskip 5pt %%\hrule Section 2.3 Example: ~~ $g(x) = x sin{1 \over x} $ \w\w \centerline{$-|x| \leq x sin{1 \over x} \leq |x|$ \hskip 1in} \w\w \centerline{$lim_{x \rightarrow 0} \big(-|x|\big) = 0$, $lim_{x \rightarrow 0} \big(|x|\big) = 0$.} \w Hence , $lim_{x \rightarrow 0} \big(x sin{1 \over x}\big) = 0$ \hoffset -0.4truein \voffset -0.3truein \vsize 9.5truein \def\u{\vskip -10pt} \def\v{\vskip 5pt} \def\s{\vskip -5pt} \def\r{\vskip -4pt} Section 2.5 Defn: $f$ is continuous at $a$ if $lim_{x \rightarrow a} f(x) = f(a)$ \s (i.e., if $lim_{x \rightarrow a} f(x) = f(lim_{x \rightarrow a} x) $ \s Examples: \vskip 1.8in \vfill Ex: Polynomial, rational, root, trigonometric, inverse trigonometric, exponential, logarithmic functions are continuous functions. \eject If $f$, $g$ continuous at $a$, $c \in {\cal R}$, then $f + g$, $fg$, $cf$, $f/g$ (if $g(a) \not= 0$) are continuous. If $g$ continuous at $a$ and $f$ continuous at $g(a)$, then $f \circ g$ continuous at $a$. Ex: $lim_{x \rightarrow 0} {x^2 - e^{x^3} \over cos(x)} =$ \vskip 5pt \hrule \vskip -5pt \end Section 3.3: To find vertical asymptotes,\hfil \break find all $a \in {\cal R}$ such that \hfil \break $lim_{x \rightarrow a^-} f(x) = \pm \infty $ and/or $lim_{x \rightarrow a^+} f(x) = \pm \infty $ Ex: $f(x) = {1 \over (x+2)(x -3)^2}$ \vskip 1.1in Section 2.6: \hfil \break Horizontal asymptotes/limits at infinity \s To find horizontal asymptotes: \hfil\break calculate $lim_{x \rightarrow +\infty} f(x)$ and $lim_{x \rightarrow -\infty} f(x)$ \s IF $lim_{x \rightarrow +\infty} f(x) = L$ where $L$ is a finite real number, then $y = L$ is a horizontal asymptote. \s IF $lim_{x \rightarrow -\infty} f(x) = K$ where $K$ is a finite real number, then $y = K$ is a horizontal asymptote. \vfill \eject Ex: $f(x) = {2x^3 - x^2 + 1 \over 8x^3 + x + 3}$ $lim_{x \rightarrow +\infty} {2x^3 - x^2 + 1 \over 8x^3 + x + 3} = $ \vfill Similarly, $lim_{x \rightarrow -\infty} {2x^3 - x^2 + 1 \over 8x^3 + x + 3} = $ Horizontal asymptote(s): \vskip 1cm \eject Ex: $f(x) = { x^2 + 1 \over 2x^5 + x^2 - 3}$ $lim_{x \rightarrow +\infty} { x^2 + 1 \over 2x^5 + x^2 - 3} = $ \vfill Similarly, $lim_{x \rightarrow -\infty} { x^2 + 1 \over 2x^5 + x^2 - 3} = $ Horizontal asymptote(s): \v \hrule Ex: $f(x) = { 2x^5 + x^2 - 3 \over x^2 + 1 }$ $lim_{x \rightarrow +\infty} { 2x^5 + x^2 - 3 \over x^2 + 1 } = $ \vfill Also, $lim_{x \rightarrow -\infty} { 2x^5 + x^2 - 3 \over x^2 + 1 }= $ Horizontal asymptote(s): \v \eject Ex: $f(x) = { 2x \over \sqrt {x^2 + 1} } $ $lim_{x \rightarrow +\infty} { 2x \over \sqrt{x^2 + 1} } = $ \vfill $lim_{x \rightarrow -\infty} { 2x \over \sqrt{x^2 + 1} }= $ \vfill \v\v\v\v\v\v\v\v\v\v\v Horizontal asymptote(s): \v \eject Ex: $f(x) = x^2 - x^3$ $lim_{x \rightarrow +\infty} x^2 - x^3 = $ \vfill \vfill\vfill $lim_{x \rightarrow -\infty} x^2 - x^3 = $ \vfill\vfill \vfill Horizontal asymptote(s): \v \hrule Ex: $f(x) = x^{2 \over 3} - x$ $lim_{x \rightarrow +\infty} x^{2 \over 3} - x =$ \vfill \vfill\vfill $lim_{x \rightarrow -\infty} x^{2 \over 3} - x =$ \vfill \vfill \vfill Horizontal asymptote(s): \v \end