\[
\frac{f}{g} = f \cdot g^{-1} \Rightarrow -1 \text{ exponent}
\]

\[
\left(\frac{f}{g} \right)' = (f \cdot g^{-1})'
\]

\[
\left(\frac{f(x)}{g(x)} \right)' = \left(f(x) \cdot [g(x)]^{-1} \right)'
\]

\[
= f'(x) \cdot [g(x)]^{-1} + f(x) \cdot (-[g(x)]^{-2} \cdot g'(x))
\]

\[
= \left(f'(x) \cdot [g(x)]^{-1} - f(x) g'(x) \right) \cdot \frac{1}{[g(x)]^2}
\]

\[
= \frac{f'(x) \cdot g(x) - f(x) g'(x)}{[g(x)]^2}
\]
3.1) **Interval defn's**

open: $(a, b) = \{ x \mid a < x < b \}$

closed: $[a, b] = \{ x \mid a \leq x \leq b \}$

half open half closed
FYI: for all A there exists \exists
Theorem 1: \(f'(x) < 0 \) for all \(x \) in an interval \(I \) implies \(f \) is decreasing over \(I \).

\[f(x) \text{ is a relative minimum if there exists } (a, b) \text{ st. } c \in (a, b) \text{ s.t. } \forall x \in (a, b), f(x) \geq f(c) \]
$f(c)$ and $f(d)$ are relative extrema

$f(d)$ is a relative maximum if there exist (e,f) such that $d \in (e,f)$ and $f(d) \geq f(x)$ for all $x \in (e,f)$.

$f(c)$ is a relative minimum if there exists (a,b) such that $c \in (a,b)$ [i.e., $a < c < b$] and $f(x) \geq f(c)$ for all $x \in (a,b)$. (or local)
c is a critical point if \(f'(c) = 0 \) or DNE

rel max

rel min's

Note the converse of

SIDENOTE: c should also be in domain of f (but you can ignore that & focus on all points of interest i.e. \(f'(c) = 0 \), DNE
Thm 2: If \(f(c) \) is a relative extrema then \(c \) is a critical point of \(f \).

Note the converse is false. Thm 2 is **not** an if and only if.

Ex: \(f(x) = x^3 \)
\[
f'(x) = 3x^2
\]
\[
3x^2 = 0 \implies x = 0
\]
\(x = 0 \) is a critical point.

But \(f(0) \) is not a relative extrema.

\(f \) is an increasing function even though \(f'(0) = 0 \).
Thm 3: 1st derivative test for finding extrema
Suppose f is cont on (a, b)

1) If $f'(x) < 0$ on $\ (a, c)$
 $f'(x) > 0$ on $\ (c, b)$
 \[\Rightarrow\] f has rel min at c

\[\begin{array}{cccc}
a & c & b \\
\end{array}\]

2) If $f'(x) > 0$ on (a, c)
 $f'(x) < 0$ on (c, b)
 \[\Rightarrow\] f has rel max at c

\[\begin{array}{cc}
\uparrow & \downarrow \\
\rightarrow & \rightarrow \\
a & c & b \\
\end{array}\]
(3) \(f'(x) > 0 \) on \((a, c) \) \& \((c, b) \)
\[\Rightarrow \] no rel ext at \(c \)

\[f'(x) < 0 \] on \((a, c) \) \& \((c, b) \)
\[\Rightarrow \] no rel ext at \(c \)

\[f(x) = x^2 + x - 6 \]

\[f'(x) = 2x + 1 \]

\[2x + 1 = f'(x) \]

\[\text{rel min} \]

\[2x + 1 = 0 \]

\[-\frac{1}{2} \]