2.5 Formulas (take the derivative) EX: $(X)' = \frac{d(X)}{dX} = \frac{dX}{dX} = 1$ $\frac{\partial v_{10} v_{2}}{\partial x} = \frac{\partial v_{10}}{\partial x} = 1$ $\frac{\partial v_{10} v_{2}}{\partial x} = 1$ $E x : (1)' = (x^{\circ})' = 0.x^{\circ - 1} = 0$ (2) (sin X) = cos X y=sin X(3) $(\cos x)' = -\sin x$ $\frac{1}{\sqrt{1-\cos x}}$ (Cf) = C(f)' = Cf' (constant)(5)(f+g)'=f'+g'(fg) = fg + f'g

(a) quotient rule
(b) chain rule

y=X (X)' = 5/ope f tangent line tangent line: y = X EX y=2x+3(2x+3) = Slope of tangent line tangent line; y = 2x + 3The best linear (ie line)
approximating to the line y=2x+3 slope = (3)'=0 tangent line: y = 3

$$Ex: (2x^{3} - 4x^{-1} + 2)'$$

$$= 2 \cdot (x^{3})' - 4 \cdot (x^{-1})' + (2)'$$

$$= 2 \cdot (3x^{2}) - 4 \cdot (-1x^{-2}) + 0$$

$$= [6x^{2} + 4x^{-2}] \in$$

$$Ex: (3x^{2} - \sqrt{x^{-1}})'$$

$$= (3x - x^{-1/2} - x^{-1})'$$

$$= (3x - x^{-1/2} - x^{-1})'$$

$$= [3x - x^{-3/2} + x^{-2}]$$

$$= [x^{5/2}]' = [x^{2} \cdot x^{2}]'$$

$$= [x^{5/2}]' = [x^{3/2}]'$$

Ex:
$$(5x + 2\sin x + 3\cos x)^n$$

= $5 + 2\cos x = 3\sin x$
2.7 prodoct rule
 $(f \cdot g)'(x) = \lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h}$
 $= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$
 $= \lim_{h \to 0} \frac{f(x+h)g(x) + f'(x)g(x)}{h}$
sechook
In other notation
 $\frac{d}{dx}(fg) = f\frac{dg}{dx} + \frac{df}{dx}g$
 $\frac{d}{dx}(fg)' = fg' + f'g$

$$EX: (2 \times sin x)$$

$$= (2x)(sin x) + (2x)'(sin x)$$

$$= (2x)(sin x) + (2x)'(sin x)$$

$$= (2x)(sin x) + (2x)'(sin x)$$

$$EX (\frac{cos x}{\sqrt{x}}) = (x^{-1/2}.cos x)$$

$$= (x^{-1/2})(cos x)' + (x^{-1/2})'(cos x)$$

$$= (x^{-1/2})(sin x) + \frac{1}{2}x^{-3/2}cos x$$

$$= x^{-1/2}sin x - \frac{x^{-3/2}cos x}{2}$$

Slope of secant line between $(x_1, f(x_1))$ and $(x_2, f(x_2))$

$$= \text{average rate of change}$$

$$= \frac{f(x_2) - f(x_1)}{f(x_2)}$$

$$= \text{average rate of } c$$

$$= \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$= \frac{\Delta f(x)}{\Delta x}$$
where $\Delta x = \text{change in } x = x_2 - x_1$

and
$$\Delta f(x) = \text{change in } f(x) = f(x_2) - f(x_1)$$

Slope of tangent line to f at $x_1 = i$ nstantaneous rate of change

$$= \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$= \lim_{x_1+h\to x_1} \frac{f(x_1+h) - f(x_1)}{x_1+h-x_1}$$

$$= \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$$

Definition f'(a) = slope of tangent line to f at a

$$= \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}.$$

If
$$f(x) = 2x - 4$$
, then $f'(8) = 2$

If
$$g(x) = 3$$
, then $g'(1) = \emptyset$

If h(x) = |x|, then h'(5) = /

and
$$h'(-5) = -/$$

$$h'(0) DNE = 1$$

Definition: Given f, then define the function f' (the derivative of f) as follows:

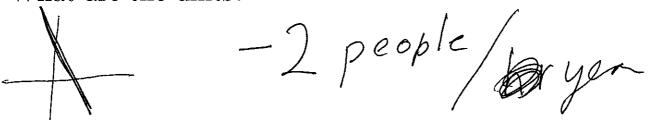
$$f'(x) =$$
slope of tangent line to f at $x = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

x is in the domain of f' if x is in the domain of f and the above limit exists.

If
$$f(x) = 2x - 4$$
, then $f'(x) = 2$

Suppose f(x) = -2x + 12 represents the distance traveled from home in miles after x hours. Find the average velocity between x = 1 and x = 3. What are the units?

between
$$x = 1$$
 and $x = 3$. What are the units:
$$-2mph | f(3) - f(1) = efc$$


Find the instantaneous velocity at x = 1: What are the units?

-2mph

Find the acceleration at x = 1: What are the units?

2

Suppose f(x) = -2x + 12 represents the population of a household x years after 2000. Find the average change in the population between 2001 and 2003 (i.e., x = 1 and x = 3). What are the units?

Find the instantaneous change in the population at x = 1: What are the units?

Suppose f(x) = 8 represents the distance traveled from home in miles after x hours. Find the <u>average</u> velocity between x = 1 and x = 3. What are the units?

Find the instantaneous velocity at x = 1: What are the units?

Find the acceleration at x = 1: What are the units?

Suppose f(x) = 8 represents the population of a household x years after 2000. Find the average change in the population between 2001 and 2003 (i.e., x = 1 and x = 3). What are the units?

O people/yr

Find the instantaneous change in the population at x = 1: What are the units?

Opeople/yr

Suppose $f(x) = \frac{x+3}{4x+1} + 2$ represents the distance traveled from home in miles after x hours. Find the average velocity between x = 1 and x = 3. What are the units?

$$\frac{f(3)-f(1)}{3-1}$$

Find the instantaneous velocity at x = 1: What are the units?

$$f'(x) = \frac{-11}{(4x+2)^2}$$

$$f'(1) = \frac{-11}{36}$$

$$previous$$