$\frac{d(uv)}{dx} = u\frac{dv}{dx} + \frac{du}{dx} v $
$\int \frac{d(uv)}{dx}dx = \int u\frac{dv}{dx}dx + \int \frac{du}{dx} v
dx $
$uv = \int u{dv} + \int v {du} $
Integration by parts: $\int u{dv} = uv - \int v du$
Formulus below copied from wikipedia:
Exponential
functions
![\int a^x\,dx = \frac{a^x}{\ln a} + C](//upload.wikimedia.org/math/0/1/8/0182b46a0ff2c343e29de6b80c99cace.png)
Logarithms
![\int \ln x\,dx = x \ln x - x + C](//upload.wikimedia.org/math/e/4/1/e41f15dcc8b252320cb077a339554d79.png)
![\int \log_a x\,dx = x\log_a x - \frac{x}{\ln a}
+ C](//upload.wikimedia.org/math/f/1/a/f1ad453b1bf6ec4cab46c1e094243a41.png)
[edit] Trigonometric
functions
- more integrals: List of integrals of trigonometric
functions
![\int \sin{x}\, dx = -\cos{x} + C](//upload.wikimedia.org/math/2/a/4/2a45501179a7e0920775a8090134a941.png)
![\int \cos{x}\, dx = \sin{x} + C](//upload.wikimedia.org/math/9/4/e/94e779e1a98bab8c6307c101c60a1127.png)
![\int \tan{x} \, dx = -\ln{\left| \cos {x}
\right|} + C = \ln{\left| \sec{x} \right|} + C](//upload.wikimedia.org/math/e/d/c/edce9726f945b3febe8f486100f900ba.png)
![\int \cot{x} \, dx = \ln{\left| \sin{x} \right|}
+ C](//upload.wikimedia.org/math/1/a/b/1abda5887cef00ac0f651ae8287b4bd7.png)
![\int \sec{x} \, dx = \ln{\left| \sec{x} +
\tan{x}\right|} + C](//upload.wikimedia.org/math/c/7/6/c76d6ef06bbafced4fadf56a8b4dc74d.png)
![\int \csc{x} \, dx = -\ln{\left| \csc{x} +
\cot{x}\right|} + C](//upload.wikimedia.org/math/5/d/9/5d99653eecb81cbf32c39a23f87bb6a1.png)
![\int \sec^2 x \, dx = \tan x + C](//upload.wikimedia.org/math/8/b/0/8b09ff7056eabcc271efa13119e1bf3d.png)
![\int \csc^2 x \, dx = -\cot x + C](//upload.wikimedia.org/math/6/e/f/6ef97502bc2c1fbff4e48787cfc821a8.png)
![\int \sec{x} \, \tan{x} \, dx = \sec{x} + C](//upload.wikimedia.org/math/7/a/2/7a22059521b34a4f59ce5d46a97e80ac.png)
![\int \csc{x} \, \cot{x} \, dx = -\csc{x} + C](//upload.wikimedia.org/math/f/5/6/f569d773da403cc5382844a53844f3ff.png)
![\int \sin^2 x \, dx = \frac{1}{2}\left(x -
\frac{\sin 2x}{2} \right) + C = \frac{1}{2}(x - \sin x\cos x ) + C](//upload.wikimedia.org/math/a/7/3/a73fe94121a2840a9d63d2488386dce8.png)
![\int \cos^2 x \, dx = \frac{1}{2}\left(x +
\frac{\sin 2x}{2} \right) + C = \frac{1}{2}(x + \sin x\cos x ) + C](//upload.wikimedia.org/math/8/c/5/8c581920a7c77bc5ddcdffcda23c6a3d.png)