$\frac{d(uv)}{dx} = u\frac{dv}{dx} + \frac{du}{dx} v $
$\int \frac{d(uv)}{dx}dx = \int u\frac{dv}{dx}dx + \int \frac{du}{dx} v
dx $
$uv = \int u{dv} + \int v {du} $
Integration by parts: $\int u{dv} = uv - \int v du$
Formulus below copied from wikipedia:
Exponential
functions
Logarithms
[edit] Trigonometric
functions
- more integrals: List of integrals of trigonometric
functions
-