\input epsf \input graphicx \magnification 1900 \vsize 10.7truein \hsize 7.5truein \hoffset -0.75truein \voffset -0.7truein \nopagenumbers \parskip 15pt \parindent 0 pt 5.5) Integration by substitution If $F(x) = ln|x^2 - x|$, then by chain rule $F'(x) = {1 \over x^2 - x}(2x - 1) = {2x - 1 \over x^2 - x} $ Thus $\int {2x - 1 \over x^2 - x} dx = $ How do you recognize derivative when chain rule involved? u -substition $\int {2x - 1 \over x^2 - x}dx = \int {du \over u} = \int {1 \over u}du = ln|u| + C =ln| x^2 - x| + C $ Let $u = x^2 - x$, then $du = 2x - 1$ 5.5 Examples. 1.) $\int 2x e^{x^2} dx$ \vfill 2.) $\int 3x^2 \sqrt{x^3 + 1} dx$ \vfill 3.) $\int {x dx \over x^2 + 4}$ \vfill 4.) $\int x \sqrt{1 + x} dx$ \vfill 5.) $\int \sqrt{x}(x^2 - 1)dx$ \vfill 6.) $\int cos^3(x) dx$ \vfill \eject 7.) $\int_0^\pi cos^3(x) dx =$ $\int_0^\pi cos^2(x)cos(x) dx =$ $\int_0^\pi (1 - sin^2(x))cos(x) dx $ \rightline{ $= \int_0^0 (1 - u^2)du = 0$} %%\vskip 5pt Let $u = sin(x)$, $du = cos(x)dx$,\hfil \break \line{when $x = 0$, $u = sin(0) = 0$, when $x = \pi$, $u = sin(\pi) = 0$} Shortcut method: Use symmetry. For example: \line{If $f$ is an odd function $(f(-x) = -f(x))$, then $\int_{-a}^a f(x)dx = 0$} \line{If $f$ is an even function, then $\int_{-a}^a f(x)dx = 2\int_{0}^a f(x)dx$} \end HW 13 (due Thursday 11/30) %%[5.2) 21, 23, 24 (if you didn't turn in with HW12)] %%3.10) 20, 22, 26, 32 5.4) 23, 45, 47, 50, 54 5.5) 8, 9, 11, 13, 16, 21, 28, 31, 36, 41, 42, 56, 57, 61, 64, 66, 76 6.1) 9, 19 and... HW due Monday 12/4: Review sheet (include questions/sections you would like reviewed at the beginning of the review sheet. Also include a list of formulas which you would me to provide for the final exam). \end $(a + b)^3 = (a^2 + 2ab + b^2)(a + b) = a^3 + 3a^2b + 3ab^2 + b^3$ $a^3 + 2a^2b + ab^2 a^2b + 2ab^2 + b^3$ \end