\magnification 2000 \parindent 0pt \parskip 12pt \pageno=1 \nopagenumbers \hsize 7.5truein \hoffset -0.35truein %%\voffset -0.1truein \vsize 9.5truein \def\u{\vskip -10pt} \def\v{\vskip 5pt} \def\s{\vskip -5pt} \def\r{\vskip -4pt} \def\w{\vskip 7pt} $lim_{x \rightarrow 3}~ {x^2 - 1 \over x + 3}$ \vfill $lim_{x \rightarrow 3}~ {x^2 - 1 \over x - 3}$ \vfill $lim_{x \rightarrow 3}~ {(x^2 - 1)(x - 3)\over x - 3}$ \vfill $lim_{x \rightarrow 3}~ { x - 3 \over x^2 - 1 }$ \vfill $lim_{x \rightarrow 3}~ {(x-4)^2 \over x^5(x-8)^9(x - 3)^3}$ \vfill $lim_{x \rightarrow 3}~ {(x-4)^2(x - 3) \over x^5(x-8)^9(x - 3)^3}$ \vskip 5pt \hrule \vskip -5pt Challenge example: ~~ $g(x) = x sin{1 \over x} $ \w\w \centerline{$-|x| \leq x sin{1 \over x} \leq |x|$ \hskip 1in} \w\w \centerline{$lim_{x \rightarrow 0} \big(-|x|\big) = 0$, $lim_{x \rightarrow 0} \big(|x|\big) = 0$.} Hence , $lim_{x \rightarrow 0} \big(x sin{1 \over x}\big) = 0$ \eject Standard example: \hfil \break Suppose $f(x) = \sqrt{x}$. Find $lim_{h \rightarrow 0} {f(x + h) - f(x) \over h}$ where $x > 0$ \eject Suppose $c \in {\cal R}$ and suppose $lim_{x \rightarrow a} f(x)$ and $lim_{x \rightarrow a} g(x)$ exist. Then \s $lim_{x \rightarrow a} [f(x) + g(x)] $ = $lim_{x \rightarrow a} f(x)$ + $lim_{x \rightarrow a} g(x)$ $lim_{x \rightarrow a} [cf(x)] = $ $c ~lim_{x \rightarrow a} f(x)$ $lim_{x \rightarrow a} [f(x)g(x)] = $ $lim_{x \rightarrow a} f(x)$ $lim_{x \rightarrow a} g(x)$ $lim_{x \rightarrow a} {f(x) \over g(x)} = $ ${lim_{x \rightarrow a} f(x) \over lim_{x \rightarrow a} g(x)}$ if $lim_{x \rightarrow a} g(x) \not= 0$ \vskip 5pt \hrule %%Defn: $f$ is continuous at $a$ \hfil \break %%iff $lim_{x \rightarrow a} f(x) = f(lim_{x \rightarrow a} x) = $ Defn: $f$ is continuous at $a$ if $lim_{x \rightarrow a} f(x) = f(a)$ \centerline{(i.e., if $lim_{x \rightarrow a} f(x) = f(lim_{x \rightarrow a} x) $} \s In other words, $f$ is continuous at $a$ if \hfil\break 1.) $f(a)$ exists,\hfil\break 2.) $lim_{x \rightarrow a} f(x)$ exists, and\hfil\break 3.) $lim_{x \rightarrow a} f(x) = f(a)$ Defn: $f$ is continuous is $f$ is continuous at $a$ for every $a$ in the domain of $f$. Examples: \vfill Ex: Polynomial, rational, root, trigonometric, inverse trigonometric, exponential, logarithmic functions are continuous functions. %%\eject If $f$, $g$ continuous at $a$, $c \in {\cal R}$, then $f + g$, $fg$, $cf$, $f/g$ (if $g(a) \not= 0$) are continuous at $a$. If $g$ continuous at $a$ and $f$ continuous at $g(a)$, then $f \circ g$ continuous at $a$. Ex: $lim_{x \rightarrow 0}~ {x^2 - e^{x^3} \over cos(x)} =$ \vfill %%If $f$ is continuous implies %% \centerline{$lim_{x \rightarrow a} f(g(x)) = f(lim_{x \rightarrow %% a}g(x))$ } Ex: $lim_{x \rightarrow 9}~ e^{\sqrt{x} } - 2\sqrt{x} + 4 =$ \vfill Ex: $lim_{x \rightarrow 0}~ cos(sin(x)) =$ \vfill Ex: $lim_{x \rightarrow 0}~ cos({sin(x) \over x}) =$ \vfill Ex: $lim_{h \rightarrow 0}~ {(h)tan(x)csc(h)} =$ \vfill \end