$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subset V, E^{\prime} \subset E$, and G^{\prime} is a graph.
$G\left[V^{\prime}\right]=\left(E^{\prime}, V^{\prime}\right)$ the subgraph of G induced or spanned by V^{\prime} if $E^{\prime}=\left\{x y \in E \mid x, y \in V^{\prime}\right\}$.
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a spanning subgraph of $G=(V, E)$ if $V^{\prime}=V$.
$G-W=G[V-W], G-E^{\prime}=\left(V, E-E^{\prime}\right), G+x y=(V, E \cup\{x y\})$ where x, y are nonadjacent vertices in V.
$|G|=$ order of $G=|V(G)|=$ number of vertices.
$e(G)=$ size of $G=|E(G)|=$ number of edges.
G^{n} is a graph of order $n, G(n, m)$ is a graph of order n and size m.
$E(U, V)=$ set of $U-V$ edges $=$ set of all edges in $E(G)$ joining a vertex in U to a vertex in V where $U \cap V=\emptyset$.

The complement of $G=(V, E)=\bar{G}=\left(V, V^{(2)}-E\right)$
$K_{n}=$ complete graph on n vertices. $E_{n}=\overline{K_{n}}=$ empty graph with n vertices. $K_{1}=E_{1}$ is trivial.
$\Gamma(x)=\Gamma_{G}(x)=\{y \mid x y \in E(G)\}$.
$d(x)=d_{G}(x)=\operatorname{deg}(x)=$ degree of $x=|\Gamma(x)|$.
$\delta(G)=\min \{d(x) \mid x \in V(G)\}$.
$\Delta(G)=\max \{d(x) \mid x \in V(G)\}$.
v is an isolated vertex if $d(v)=0$.
$\Sigma_{x \in V} d(x)=2 e(G)$.
A walk in a graph, $W=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{n}, v_{n}$, where $v_{i} \in V$ and $e_{i}=v_{i-1} v_{i} \in E$.
length of $W=n$.
trail $=$ walk with distinct edges.
circuit $=$ closed trail.
path $=$ walk with distinct vertices ($=$ trail with distinct vertices).
cycle $=$ circuit with distinct vertices.
A set of vertices (edges) is independent if no two elements in the set are adjacent
A set of paths is independent if no two paths share an interior vertex.
$d(x, y)=$ length of shortest $x-y$ path. If there is no $x-y$ path, then $d(x, y)=\infty$.

A graph is connected if given any pair of distinct vertices, x, y, there is an $x-y$ path.
A component of a graph $=$ a maximal connected subgraph.
A cutvertex $=$ a vertex whose deletion increases the number of components.
A bridge $=$ an edge whose deletion increases the number of components.
A forest $=$ an acyclic graph $=$ a graph without any cycles.
A tree $=\mathrm{a}$ connected forest.
$G=(V, E)$ is bipartite if there exists vertex classes, V_{1}, V_{2}, such that $V_{1} \cup V_{2}=V, V_{1} \cap V_{2}=\emptyset$, and $x y \in E, x \in V_{i}$ implies $y \notin V_{i}$ (i.e., no edge joins two vertices in the same class).
$\underline{K}\left(n_{1}, \ldots, n_{r}\right)=$ complete r-partite graph. $K_{p, q}=K(p, q), K_{r}(t)=K(t, t, \ldots, t)$
Thm 3: Suppose that $C=\left(W, E^{\prime}\right)$ is the component of $G=(V, E)$ containing the vertex x. Then $W=\{y \in V \mid G$ contains an $x-y$ path $\}=\{y \in V \mid G$ contains an $x-y$ trail $\}$
$=\{y \in V \mid d(x, y)<\infty\}=$ equivalence class of x where we take the smallest equivalence relation on V such that u is equivalent to v if $u v \in E$.

If $G=(V, E)$ connected, $W \subset V, G-W$ disconnected, then W separates G.
If $s, t \in V-W$ and s and t in different components of $G-W$, then W separates s from t.
Thm 5 (Menger 1927)
(i) Let s, t distinct nonadjacent vertices in G.
$\min \{|W| \mid W \subset V(G), W$ separates s from $t\}=$ maximum number of independent $s-t$ paths.
(ii)Let s, t distinct vertices in G.
$\min \left\{\left|E^{\prime}\right| \mid E^{\prime} \subset E(G), E^{\prime}\right.$ separates s from $\left.t\right\}=$ maximum number of edge-disjoint $s-t$ paths.
Cor 6: For $k \geq 2, G$ is k-connected iff $V(G) \geq 2$ and any two vertices can be joined by k independent paths. G is k-edge-connected iff $V(G) \geq 2$ and any two vertices can be joined by k edge disjoint paths.

If $G_{1}, G_{2} k$-connected, $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq k$, then $G_{1} \cup G_{2}$ is k-connected.
Pf: If $|W| \leq k-1$, then $G_{1} \cup G_{2}-W=\left(G_{1}-W\right) \cup\left(G_{2}-W\right)$

A subgraph B of G is a block of G if B is a bridge or if B is a maximal 2-connected subgraph of G.
If B_{1} and B_{2} are blocks, then $\left|V\left(B_{1}\right) \cap V\left(B_{2}\right)\right| \leq 1$.
If $x, y \in V(B)$, a block, and $x \neq y$ then $G-E(B)$ does not contain an $x-y$ path.
A vertex v belongs to at least two blocks iff v is a cutvertex.
$E(G)=\cup_{i=1}^{p} E\left(B_{i}\right)$ where $E\left(B_{i}\right) \cap E\left(B_{j}\right)=\emptyset$ if $i \neq j$ and B_{i} 's are blocks.

Suppose G nontrivial connected graph where $\left\{v_{1}, \ldots, v_{n}\right\}$ is the set of cutvertices of G. $b c(G)=$ block-cutvertex graph of $G=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=\left\{v_{1}, \ldots, v_{n}, B_{1}, \ldots, B_{p}\right\}$ and $E^{\prime}=\left\{\left(v_{i}, B_{j}\right) \mid v_{i} \in B_{j}\right\}$.
$b c(G)$ is a tree.
An endvertex of $b c(G)$ is a block of $G=$ endblock of G.
$G=(V, E)$ be a finite directed graph.
$\Gamma^{+}(x)=\{y \in V \mid x y \in E\}$
$\Gamma^{-}(x)=\{y \in V \mid y x \in E\}$

A flow f is a function $f: E \rightarrow[0, \infty)$ where $f(x y)=f(x, y)$.
A flow f from vertex s (the source) to a vertex t (the sink) is a function $f: E \rightarrow[0, \infty)$ where $f(x y)=f(x, y)$ such that if $x \in V-s, t$,

$$
\Sigma_{y \in \Gamma^{+}(x)} f(x, y)=\Sigma_{z \in \Gamma^{-}(x)} f(z, x)
$$

The value of f or the amount of flow from s to $t=$ the net current leaving $s=\Sigma_{y \in \Gamma^{+}(s)} f(s, y)=$ $\Sigma_{z \in \Gamma^{-}(t)} f(z, t)=$ the net current flowing into t.

The capacity of an edge $c(x, y)$ is a non-negative number such that the current flowing through $x y$ $=f(x, y) \leq c(x, y)$.

The set of directed $X-Y$ edges $=E(X, Y)=\{x y \in E \mid x \in X, y \in Y\}$.
If $g: E \rightarrow R$ is a function, $g(X, Y)=\Sigma_{x y \in E(X, Y)} g(x, y)$.
$E(S, E-S)$ is a cut separating s from t if $s \in S$ and $t \in E-S$.
The capacity of a cut $E(S, E-S)=c(S, E-S)$.

