The $i j^{t h}$ entry of P^{k} is the probability that you are in the jth state after exactly k steps given that you started in the ith state.

Suppose that p_{i} is the probability that you start in state i. Let $p=\left(p_{1}, \ldots, p_{n}\right)$. Then $p P^{k}=\left(s_{1}, \ldots, s_{n}\right)$ where s_{j} is the probability that you are in the jth state after exactly k steps.

If there are transient states:

If $P=\left(\begin{array}{cc}I & 0 \\ R & Q\end{array}\right)$, then can use Q^{k} instead of P^{k}.
If Q represents transient states, then $\lim _{n \rightarrow \infty} Q^{n}=0$
If $N=(I-Q)^{-1}=\sum_{n=0}^{\infty} Q^{n}$, then the $i j^{t h}$ entry of N is the expected number of times you are in state j given that you started in state i.

Hence the expected number of steps before absorption is the sum of the ith row of $(I-Q)^{-1}$ given that you started in state i.

If $B=N R=(I-Q)^{-1} R$, then $b_{i j}$ is the probability that absorbed in state j given that you started in state i.

Ergodic (there are NO transient states):
If regular (i.e. P^{k} is a positive matrix for some k):
P^{n} is a positive matrix for all large $n(n \geq k)$.
$\lim _{n \rightarrow \infty} P^{n}=W=\left(\begin{array}{c}\mathbf{w} \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{w}\end{array}\right)$
$\lim _{n \rightarrow \infty} p P^{n}=\mathbf{w}$
$\mathbf{w} P=\mathbf{w}$
If $E=\left(I-Z+J Z_{d g}\right) D$, then $e_{i j}$ is the expected number of steps from state i to state j (without going through state j in between, i.e., first time getting to/returning to state j).

$$
e_{i i}=\frac{1}{w_{i}}
$$

Regular if and only if period $=1$.
If not regular
Period >1
Fix $i: d=$ Period $=\operatorname{gcd}\left\{n \mid\right.$ there is a path from u_{i} to u_{i} of length $\left.n\right\}$
States can be partitioned into d periodic classes, C_{0}, \ldots, C_{d-1} such that if you start at a vertex in C_{i}, then after k steps, you are in a vertex in $C_{i+k(\text { modd })}$.

