The ij^{th} entry of P^k is the probability that you are in the jth state after exactly k steps given that you started in the ith state.

Suppose that p_i is the probability that you start in state *i*. Let $p = (p_1, ..., p_n)$. Then $pP^k = (s_1, ..., s_n)$ where s_j is the probability that you are in the jth state after exactly k steps.

If there are transient states:

If
$$P = \begin{pmatrix} I & 0 \\ R & Q \end{pmatrix}$$
, then can use Q^k instead of P^k .

If Q represents transient states, then $\lim_{n\to\infty}Q^n=0$

If $N = (I - Q)^{-1} = \sum_{n=0}^{\infty} Q^n$, then the ij^{th} entry of N is the expected number of times you are in state j given that you started in state i.

Hence the expected number of steps before absorption is the sum of the ith row of $(I-Q)^{-1}$ given that you started in state *i*.

If $B = NR = (I-Q)^{-1}R$, then b_{ij} is the probability that absorbed in state j given that you started in state i.

Ergodic (there are NO transient states): If regular (i.e. P^k is a positive matrix for some k): P^n is a positive matrix for all large $n \ (n \ge k)$.

$$lim_{n\to\infty}P^n = W = \begin{pmatrix} \mathbf{w} \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{w} \end{pmatrix}$$
$$lim_{n\to\infty}pP^n = \mathbf{w}$$
$$\mathbf{w}P = \mathbf{w}$$

If $E = (I - Z + JZ_{dg})D$, then e_{ij} is the expected number of steps from state *i* to state *j* (without going through state *j* in between, i.e., first time getting to/returning to state *j*). $e_{ii} = \frac{1}{w_i}$

Regular if and only if period = 1.

If not regular

Period > 1

Fix $i: d = \text{Period} = \text{gcd}\{n \mid \text{ there is a path from } u_i \text{ to } u_i \text{ of length } n\}$

States can be partitioned into d periodic classes, $C_0, ..., C_{d-1}$ such that if you start at a vertex in C_i , then after k steps, you are in a vertex in $C_{i+k(modd)}$.