\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \hoffset -0.35truein \vsize 9.2truein \def\u{\vskip -5pt} \def\v{\vskip 10pt} Linear Functions A function $f$ is linear if $f(a{\bf x} + b{\bf y}) = af({\bf x}) + bf({\bf y})$ Or equivalently $f$ is linear if\hfil \break 1.) $f(a{\bf x}) = af({\bf x})$ and 2.) $f({\bf x} + {\bf y}) = f({\bf x}) + f({\bf y})$ Theorem: If $f$ is linear, then $f({\bf 0}) = {\bf 0}$ Proof: $f({\bf 0}) = f(0 \cdot {\bf 0}) = 0 \cdot f({\bf 0}) = {\bf 0}$ Example 1.) $f:R \rightarrow R$, $f(x) = 2x$ Proof:\hfil \break $f(ax + by) = 2(ax + by) = 2ax + 2by = af(x) + bf(y)$ Example 2.) $f:R^2 \rightarrow R^2$, \centerline{$f((x_1,x_2)) = (2x_1, x_1 + x_2)$} Proof: Let ${\bf x} = (x_1, x_2)$, ${\bf y} = (y_1, y_2) $a{\bf x} + b{\bf y} = a(x_1, x_2) + b(y_1, y_2) = (ax_1, ax_2) + (by_1, by_2) = (ax_1 + by_1, ax_2 + by_2)$ \eject $f(ax_1 + by_1, ax_2 + by_2) $ \hskip 0.4in $= (2(ax_1 + by_1), ax_1 + by_1 + ax_2 + by_2) $ \hskip 0.4in $= (2ax_1 + 2by_1, ax_1 + ax_2 + by_1 + by_2) $ \hskip 0.4in $=(2ax_1, ax_1 + ax_2) + (2by_1, by_1 + by_2) $ \hskip 0.4in $= a(2x_1, x_1 + x_2) + b(2y_1, y_1 + y_2)$ \hskip 0.4in $= af((x_1, x_2)) + bf((y_1, y_2))$ Example 3.) $D:$ {set of all differential functions} $\rightarrow$ {set of all functions}, $D(f) = f'$ Proof: \hfil \break $D(af + bg) = (af + bg)' = af' + bg' = aD(f) + bD(g)$ Example 4.) Given $a, b$ real numbers,\hfil \break $I:$ {set of all integrable functions on [a, b]} $\rightarrow R$ , $I(f) = \int_a^b f$ Proof: $I(sf + tg) = \int_a^b sf + tg = s \int_a^b f + t \int_a^b g = sI(f) + tI(g)$ \eject Example 5.) The inverse of a linear function is linear (when the inverse exists). Suppose $f^{-1}(x) = c$, $f^{-1}(y) = d$. Then $f(c) = x$ and $f(d) = y$ and \hfil \break $f(ac + bd) = af(c) + bf(d) = ax + by$. Hence $f^{-1}(ax + by) = ac + bd = a f^{-1}(x) + bf^{-1}(y)$. Example 6.) $D:$ {set of all twice differential functions} $\rightarrow$ {set of all functions}, $L(f) = af'' + bf' + cf$ Proof: \hfil \break $L(sf + tg) = a(sf + tg)'' + b(sf + tg)' + c(sf + tg) $ \hskip 0.67in $= saf'' + tag'' + sbf' + tbg' + scf + tcg $ \hskip 0.67in $= s(af'' + bf' + cf) +t(ag'' + bg' + cg) $ \hskip 0.67in $= sL(f) + tL(g)$ \eject Consequence 1: If $\psi_1, \psi_2$ are solutions to $af'' + bf' + cf = 0$, then $3 \psi_1 + 5 \psi_2$ is also a solution to \break $af'' + bf' + cf = 0$, Proof: Since $\psi_1, \psi_2$ are solutions to $af'' + bf' + cf = 0$, $L(\psi_1) = 0$ and $L(\psi_2) = 0$. Hence $L(3 \psi_1 + 5 \psi_2) = 3 L(\psi_1) + 5 L(\psi_2)$ \u \hskip 1.24in$ = 3(0) + 5(0) = 0$. \u Thus $3 \psi_1 + 5 \psi_2$ is also a solution to $af'' + bf' + cf = 0$ Consequence 2: \hfil \break If $\psi_1$ is a solution to $af'' + bf' + cf = h$ \hfil \break and $\psi_2$ is a solution to $af'' + bf' + cf = k$, \hfil \break then $3 \psi_1 + 5 \psi_2$ is a solution to $af'' + bf' + cf = 3h + 5k$, Since $\psi_1$ is a solution to $af'' + bf' + cf = h$, $L(\psi_1) = h$. Since $\psi_2$ is a solution to $af'' + bf' + cf = k$, $L(\psi_2) = k$. Hence $L(3 \psi_1 + 5 \psi_2) = 3 L(\psi_1) + 5 L(\psi_2)$ \u \hskip 1.27in$ = 3h + 5k$. \u Thus $3 \psi_1 + 5 \psi_2$ is also a solution to \centerline{$af'' + bf' + cf = 3h + 5k$} \end \v \hrule Calculus pre-requisites you must know. Derivative = slope of tangent line = rate. Integral = area between curve and x-axis (where area can be negative). \eject Integration by parts: Derivative of a product: $(uv)' = uv' + vu'$ \centerline{$uv' = (uv)' - vu'$} \centerline{$\int uv' = \int (uv)' - \int vu'$} \centerline{$\int uv' = (uv) - \int vu'$} Example: $\int e^{2x} sin(3x)$ Let $u = sin(3x)$, $dv = e^{2x}$ then $du = 3cos(3x)$, $v = {1 \over 2}e^{2x}$ then $d^2u = -9sin(3x)$, $\int v = {1 \over 4}e^{2x}$ $\int e^{2x} sin(3x) = {1 \over 2}sin(3x)e^{2x} - \int {3 \over 2}e^{2x}cos(3x)$ \hskip 0.4in $= {1 \over 2}sin(3x)e^{2x} - [{3 \over 4}cos(3x)e^{2x} - \int {-9 \over 4}sin(3x)e^{2x}$ $\int e^{2x} sin(3x) = {1 \over 2}sin(3x)e^{2x} - {3 \over 4}cos(3x)e^{2x} - {9 \over 4}\int sin(3x)e^{2x}$ ${13 \over 4} \int e^{2x} sin(3x) = {1 \over 2}sin(3x)e^{2x} - {3 \over 4}cos(3x)e^{2x}$ $\int e^{2x} sin(3x) = {4 \over 13}[{1 \over 2}sin(3x)e^{2x} - {3 \over 4}cos(3x)e^{2x}]$ \vfill Exercise: Calculate $\int e^{x} cos(2x)$