
f : A→ B is 1:1 iff f(x1) = f(x2) implies x1 = x2.

f(x1) = f(x2) implies x1 = x2.

Hypothesis: f(x1) = f(x2). Conclusion x1 = x2.

Hypothesis implies conclusion.
p implies q.

p⇒ q.

Note a statement, p ⇒ q, is true if whenever the
hypothesis p holds, then the conclusion q also holds.

To prove that a statement is true:
(1) Assume the hypothesis holds.
(2) Prove the conclusion holds.

Ex: To prove a function is 1:1:
(1) Assume f(x1) = f(x2)
(2) Do some algebra to prove x1 = x2.

[p⇒ q] is equivalent to [∀p, q holds].

That is, for everything satisfying the hypothesis p,
the conclusion q must hold.
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A statement is false if the hypothesis holds, but the
conclusion need not hold.

Hypothesis does not implies conclusion.
p does not imply q.

p 6⇒ q.

That is there exists a specific case where the hy-
pothesis holds, but the conclusion does not hold.

To prove that a statement is false:

Find an example where the hypothesis holds, but
the conlusion does not hold.

Ex: To prove a function is not 1:1, find specific x1, x2

such that f(x1) = f(x2), but x1 6= x2.

Ex: f : R→ R, f(x) = x2 is not 1:1
since f(1) = 12 = 1 = (−1)2 = f(−1), but 1 6= −1

∼ [p⇒ q] is equivalent to ∼ [∀p, q holds].

Thus if p⇒ q is false,
then it is not true that [∀p, q holds].
That is, ∃p such that q does not hold.
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If p⇒ q is true, then
its contrapostive ∼ q ⇒∼ p is also true.

But its converse, q ⇒ p may not be true.

Thm 2.1.1: Pigeonhole Principle (weak form): If you
have n + 1 objects placed in n boxes, then at least
one box will be occupied by 2 or more objects.

Thm 2.1.1: Pigeonhole Principle (weak form): If you
have n+1 pigeons in n pigeonholes, then at least one
pigeonhole will be occupied by 2 or more pigeons.

Thm 2.1.1: If f : A→ B is a function and
|A| = n + 1, and |B| = n, then f is not 1:1.

Cor: If f : A → B is a function and A is finite and
|A| > |B|, then f is not 1:1.
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Note that the domain must have more elements then
the codomain to guarantee that f is not 1:1.

Recall the converse of [p implies q] is [q implies p].

Note the converse of a theorem is frequently false as
the following example illustrates:

c : {1, ..., n} → {1, ..., n}, c(k) = 1 is not 1 : 1,

but domain does not have more elements than the
codomain.

f : A→ B a function which is not 1:1 does not imply
|A| > |B|.

Contrapositive of [p implies q] is [ ∼ q implies ∼ p].
The contrapositive of a theorem is true:

Cor: If f : A → B is a function which is 1:1, then
|A| ≤ |B|.

Related theorem:
Thm: If f : A→ B is a function and
if |A| = n = |B|, then f is 1:1 iff f is onto.
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Application 6: Chinese remainder theorem:
Suppose m,n, a, b ∈ Z, (m,n) = 1, 0 ≤ a ≤ m − 1,
0 ≤ b ≤ n− 1, then ∃x ≥ 0 such that x = pm + a =
qn + b for p, q ∈ Z.

Moreover can take p ∈ {0, ..., n− 1}.

Thm 2.2.1 Pigeonhole Principle (strong form): Let
q1, q2, ..., qn be positive integers. If q1+q2+ ...+qn−
n + 1 objects are put into n boxes, then for some i
the ith box contains at least qi objects

Proof Outline:

Cor: Pigeonhole Principle (weak form):

Proof. Let qi = 2 for all i.
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Cor: If n(r − 1) + 1 objects are put into n boxes,
then there exists a box containing at least r objects.

Proof: Let qi = r for all i. Note nr − n + 1 =
n(r − 1) + 1.

Cor A: If mi ∈ Z+ and if m1+...+mn

n > r − 1, then
there exists an i such that mi ≥ r.

Cor A: If mi ∈ Z+ and if m1+...+mn

n ≥ r, then there
exists an i such that mi ≥ r.

Lemma B: If m1+...+mn

n < r, then there exists an i
s. t. mi < r.
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Appl: Suppose you have 20 pairs of shoes in your
closet. If you grab n shoes at random, what should
n be so that you are guaranteed to have a matching
pair of shoes.

Appl: Suppose you have 20 pairs of socks. If you
grab n socks at random, what should n be so that
you are guaranteed to have a matching pair of shoes.

Appl: Suppose you have 20 pairs of socks. If 7 are
black and 13 are white, and if you grab n socks at
random, what should n be so that you are guaran-
teed to have a pair of socks of the same color.

Appl 7: If you have an arbitrary number of apples,
bananas and oranges, what is the smallest number
of these fruits that one needs to put in a basket in
order to guarantee there are at least 8 apples or at
least 6 bananas or at least 9 oranges in the basket.
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Appl 9: Show that every sequence a1, a2, ..., an2+1

contains either an increasing or decreasing subse-
quence of length n + 1.

Example (n = 2):

a1 = 8, a2 = 4, a3 = 10, a4 = 6, a5 = 4

Need n + 1 objects in our subsequence. Suppose
r = n + 1.

Hence might need n(r− 1) + 1 = n(n+ 1− 1) + 1 =
n2 + 1 objects in n boxes in order to obtain at least
r = n + 1 objects in one of the boxes.

Let mk = length of largest increasing subsequence
beginning with ak.

8 8, 10 m1 = 2

4 4, 10 4, 6 4, 4 m2 = 2

10 m3 = 1 6 m4 = 1 4 m5 = 1

Proof: Let mk = length of largest increasing subse-
quence beginning with ak, k = 1, ..., n2 + 1.
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Suppose there exists an mk ≥ n + 1. Then there
exists an increasing subsequence of length mk ≥ n+
1. Hence there exists an increasing subsequence of
length n + 1.

Suppose mk < n + 1. Then mk = 1, 2, ..., or n.

Hence there exists an i such that mk = i for n + 1
ak’s.

There exists ak1
, ak2

, ..., akn+1
such that

mk1
= mk2

= ... = mkn+1
= i

Show ak1
, ak2

, ..., akn+1
is a decreasing sequence.

Suppose not. Then there exists a j such that akj
>

akj+1
.

∃ an increasing subsequence of length i starting at
akj

There does not exist an increasing subsequence of
length i + 1 starting at akj

∃ an increasing subsequence of length i starting at
akj+1
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There does not exist an increasing subsequence of
length i + 1 starting at akj+1

Suppose akj+1
, ah2

, ah3
, ..., ahi

is an increasing sub-
sequence of length i.

Then akj
, akj+1

, ah2
, ah3

, ..., ahi
is an increasing sub-

sequence of length i + 1, a contradiction.
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