$f: A \rightarrow B$ is $1: 1$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2}
$$

Hypothesis: $f\left(x_{1}\right)=f\left(x_{2}\right) . \quad$ Conclusion $x_{1}=x_{2}$.
Hypothesis implies conclusion.
p implies q.

$$
p \Rightarrow q .
$$

Note a statement, $p \Rightarrow q$, is true if whenever the hypothesis p holds, then the conclusion q also holds.

To prove that a statement is true:
(1) Assume the hypothesis holds.
(2) Prove the conclusion holds.

Ex: To prove a function is $1: 1$:
(1) Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$
(2) Do some algebra to prove $x_{1}=x_{2}$.
[$p \Rightarrow q]$ is equivalent to $[\forall p, q$ holds].
That is, for everything satisfying the hypothesis p, the conclusion q must hold.

A statement is false if the hypothesis holds, but the conclusion need not hold.

Hypothesis does not implies conclusion. p does not imply q.

$$
p \nRightarrow q .
$$

That is there exists a specific case where the hypothesis holds, but the conclusion does not hold.

To prove that a statement is false:
Find an example where the hypothesis holds, but the conlusion does not hold.

Ex: To prove a function is not 1:1, find specific x_{1}, x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, but $x_{1} \neq x_{2}$.

Ex: $f: R \rightarrow R, f(x)=x^{2}$ is not $1: 1$ since $f(1)=1^{2}=1=(-1)^{2}=f(-1)$, but $1 \neq-1$
$\sim[p \Rightarrow q]$ is equivalent to $\sim[\forall p, q$ holds $]$.
Thus if $p \Rightarrow q$ is false, then it is not true that [$\forall p, q$ holds]. That is, $\exists p$ such that q does not hold.

If $p \Rightarrow q$ is true, then
its contrapostive $\sim q \Rightarrow \sim p$ is also true.
But its converse, $q \Rightarrow p$ may not be true.

Thm 2.1.1: Pigeonhole Principle (weak form): If you have $n+1$ objects placed in n boxes, then at least one box will be occupied by 2 or more objects.

Thm 2.1.1: Pigeonhole Principle (weak form): If you have $n+1$ pigeons in n pigeonholes, then at least one pigeonhole will be occupied by 2 or more pigeons.

Thm 2.1.1: If $f: A \rightarrow B$ is a function and $|A|=n+1$, and $|B|=n$, then f is not 1:1.

Cor: If $f: A \rightarrow B$ is a function and A is finite and $|A|>|B|$, then f is not 1:1.

Note that the domain must have more elements then the codomain to guarantee that f is not 1:1.

Recall the converse of $[p$ implies $q]$ is $[q$ implies $p]$.
Note the converse of a theorem is frequently false as the following example illustrates:

$$
c:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}, c(k)=1 \text { is not } 1: 1
$$

but domain does not have more elements than the codomain.
$f: A \rightarrow B$ a function which is not $1: 1$ does not imply $|A|>|B|$.

Contrapositive of $[p$ implies q] is [$\sim q$ implies $\sim p]$. The contrapositive of a theorem is true:

Cor: If $f: A \rightarrow B$ is a function which is $1: 1$, then $|A| \leq|B|$.

Related theorem:
Thm: If $f: A \rightarrow B$ is a function and if $|A|=n=|B|$, then f is $1: 1$ iff f is onto.

Application 6: Chinese remainder theorem:
Suppose $m, n, a, b \in \mathcal{Z},(m, n)=1,0 \leq a \leq m-1$, $0 \leq b \leq n-1$, then $\exists x \geq 0$ such that $x=p m+a=$ $q n+b$ for $p, q \in \mathcal{Z}$.

Moreover can take $p \in\{0, \ldots, n-1\}$.

Thm 2.2.1 Pigeonhole Principle (strong form): Let $q_{1}, q_{2}, \ldots, q_{n}$ be positive integers. If $q_{1}+q_{2}+\ldots+q_{n}-$ $n+1$ objects are put into n boxes, then for some i the i th box contains at least q_{i} objects

Proof Outline:

Cor: Pigeonhole Principle (weak form):
Proof. Let $q_{i}=2$ for all i.

Cor: If $n(r-1)+1$ objects are put into n boxes, then there exists a box containing at least r objects.

Proof: Let $q_{i}=r$ for all i. Note $n r-n+1=$ $n(r-1)+1$.

Cor A: If $m_{i} \in \mathcal{Z}_{+}$and if $\frac{m_{1}+\ldots+m_{n}}{n}>r-1$, then there exists an i such that $m_{i} \geq r$.

Cor A: If $m_{i} \in \mathcal{Z}_{+}$and if $\frac{m_{1}+\ldots+m_{n}}{n} \geq r$, then there exists an i such that $m_{i} \geq r$.

Lemma B: If $\frac{m_{1}+\ldots+m_{n}}{n}<r$, then there exists an i s. t. $m_{i}<r$.

Appl: Suppose you have 20 pairs of shoes in your closet. If you grab n shoes at random, what should n be so that you are guaranteed to have a matching pair of shoes.

Appl: Suppose you have 20 pairs of socks. If you grab n socks at random, what should n be so that you are guaranteed to have a matching pair of shoes.

Appl: Suppose you have 20 pairs of socks. If 7 are black and 13 are white, and if you grab n socks at random, what should n be so that you are guaranteed to have a pair of socks of the same color.

Appl 7: If you have an arbitrary number of apples, bananas and oranges, what is the smallest number of these fruits that one needs to put in a basket in order to guarantee there are at least 8 apples or at least 6 bananas or at least 9 oranges in the basket.

Appl 9: Show that every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains either an increasing or decreasing subsequence of length $n+1$.

Example $(n=2)$:
$a_{1}=8, a_{2}=4, a_{3}=10, a_{4}=6, a_{5}=4$
Need $n+1$ objects in our subsequence. Suppose $r=n+1$.

Hence might need $n(r-1)+1=n(n+1-1)+1=$ $n^{2}+1$ objects in n boxes in order to obtain at least $r=n+1$ objects in one of the boxes.

Let $m_{k}=$ length of largest increasing subsequence beginning with a_{k}.
$8 \quad 8,10 \quad m_{1}=2$
$4 \quad 4,10 \quad 4,6 \quad 4,4 \quad m_{2}=2$
$10 \quad m_{3}=1$
$6 \quad m_{4}=1$
$4 m_{5}=1$
Proof: Let $m_{k}=$ length of largest increasing subsequence beginning with $a_{k}, k=1, \ldots, n^{2}+1$.

Suppose there exists an $m_{k} \geq n+1$. Then there exists an increasing subsequence of length $m_{k} \geq n+$ 1. Hence there exists an increasing subsequence of length $n+1$.

Suppose $m_{k}<n+1$. Then $m_{k}=1,2, \ldots$, or n.
Hence there exists an i such that $m_{k}=i$ for $n+1$ a_{k} 's.

There exists $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n+1}}$ such that

$$
m_{k_{1}}=m_{k_{2}}=\ldots=m_{k_{n+1}}=i
$$

Show $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n+1}}$ is a decreasing sequence.
Suppose not. Then there exists a j such that $a_{k_{j}}>$ $a_{k_{j+1}}$.
\exists an increasing subsequence of length i starting at $a_{k_{j}}$

There does not exist an increasing subsequence of length $i+1$ starting at $a_{k_{j}}$
\exists an increasing subsequence of length i starting at $a_{k_{j+1}}$

There does not exist an increasing subsequence of length $i+1$ starting at $a_{k_{j+1}}$

Suppose $a_{k_{j+1}}, a_{h_{2}}, a_{h_{3}}, \ldots, a_{h_{i}}$ is an increasing subsequence of length i.

Then $a_{k_{j}}, a_{k_{j+1}}, a_{h_{2}}, a_{h_{3}}, \ldots, a_{h_{i}}$ is an increasing subsequence of length $i+1$, a contradiction.

