f:A— Bis 1:1iff f(z1) = f(x2) implies x1 = 5.

f(x1) = f(x2) implies 1 = xs.
Hypothesis: f(x1) = f(x2).  Conclusion x1 = xs.

Hypothesis implies conclusion.
p implies q.
p=q.

Note a statement, p = ¢, is true if whenever the
hypothesis p holds, then the conclusion ¢ also holds.

To prove that a statement is true:
(1) Assume the hypothesis holds.
(2) Prove the conclusion holds.

Ex: To prove a function is 1:1:

(1) Assume f(x1) = f(z2)

(2) Do some algebra to prove r; = x».

[p = q] is equivalent to [Vp, ¢ holds].

That is, for everything satistying the hypothesis p,
the conclusion ¢ must hold.



A statement is false if the hypothesis holds, but the
conclusion need not hold.

Hypothesis does not implies conclusion.
p does not imply q.

p 7 q.

That is there exists a specific case where the hy-
pothesis holds, but the conclusion does not hold.

To prove that a statement is false:

Find an example where the hypothesis holds, but
the conlusion does not hold.

Ex: To prove a function is not 1:1, find specific x1, x5

such that f(z1) = f(x2), but x1 # xs.

Ex: f: R— R, f(z) = z* is not 1:1
since f(1) = 12 =1=(-1)?= f(-1),but 1 # —1

~ |p = q| is equivalent to ~ [Vp, ¢ holds].

Thus if p = ¢ is false,
then it is not true that [Vp, ¢ holds].
That is, dp such that ¢ does not hold.



If p = ¢ is true, then
its contrapostive ~ g =~ p is also true.

But its converse, ¢ = p may not be true.

Thm 2.1.1: Pigeonhole Principle (weak form): If you
have n 4+ 1 objects placed in n boxes, then at least
one box will be occupied by 2 or more objects.

Thm 2.1.1: Pigeonhole Principle (weak form): If you
have n+1 pigeons in n pigeonholes, then at least one
pigeonhole will be occupied by 2 or more pigeons.

Thm 2.1.1: If f: A — B is a function and
|A| =n+1, and |B| = n, then f is not 1:1.

Cor: If f: A — B is a function and A is finite and
|A| > |B|, then f is not 1:1.



Note that the domain must have more elements then
the codomain to guarantee that f is not 1:1.

Recall the converse of [p implies ¢q] is [q implies p].

Note the converse of a theorem is frequently false as
the following example illustrates:

c:{1,...,n} —={1,...n}, ¢(k) =1isnot 1:1,

but domain does not have more elements than the
codomain.

f : A — B afunction which is not 1:1 does not imply
A > |BJ.

Contrapositive of [p implies q| is | ~ ¢ implies ~ p].
The contrapositive of a theorem is true:

Cor: If f : A — B is a function which is 1:1, then
Al < [B].

Related theorem:
Thm: If f: A — B is a function and
if |A| =n =|B]|, then f is 1:1 iff f is onto.



Application 6: Chinese remainder theorem:
Suppose m,n,a,b € Z, (m,n) =1,0<a <m—1,
0<b<n-—1, then dr > 0 such that t =pm +a =
gn + b for p,q € Z.

Moreover can take p € {0,...,n — 1}.

Thm 2.2.1 Pigeonhole Principle (strong form): Let
q1,92, ..., qy be positive integers. If g1 +¢qgo+ ...+ @, —
n + 1 objects are put into n boxes, then for some ¢
the 1th box contains at least ¢; objects

Proof Outline:

Cor: Pigeonhole Principle (weak form):

Proof. Let ¢; = 2 for all 1.




Cor: If n(r — 1) + 1 objects are put into n boxes,
then there exists a box containing at least r objects.

Proof: Let ¢; = r for all i. Note nr —n+ 1 =
n(r—1)+ 1.

Cor A: If m; € Z, and if m1+'ﬁ'+m" > r — 1, then
there exists an ¢ such that m; > r.

Cor A: If m; € Z4 and if m1+'ﬁ'+m"’° > 7, then there
exists an ¢ such that m; > r.

Lemma B: If m1+'?'?:+m” < r, then there exists an ¢
s. t.m; <.



Appl: Suppose you have 20 pairs of shoes in your
closet. If you grab n shoes at random, what should
n be so that you are guaranteed to have a matching
pair of shoes.

Appl: Suppose you have 20 pairs of socks. If you
grab n socks at random, what should n be so that
you are guaranteed to have a matching pair of shoes.

Appl: Suppose you have 20 pairs of socks. If 7 are
black and 13 are white, and if you grab n socks at
random, what should n be so that you are guaran-
teed to have a pair of socks of the same color.

Appl 7: If you have an arbitrary number of apples,
bananas and oranges, what is the smallest number
of these fruits that one needs to put in a basket in
order to guarantee there are at least 8 apples or at
least 6 bananas or at least 9 oranges in the basket.



Appl 9: Show that every sequence ai,as, ..., a,2.11
contains either an increasing or decreasing subse-
quence of length n + 1.

Example (n = 2):
CL1:8, CL2:4, CL3:10, CL4:6, CL5:4

Need n + 1 objects in our subsequence. Suppose
r=n-+ 1.

Hence might need n(r —1)+1=n(n+1—-1)+1 =
n? 4 1 objects in n boxes in order to obtain at least
r =n + 1 objects in one of the boxes.

Let m; = length of largest increasing subsequence
beginning with ag.

8 8,10 m1:2
4 4,10 4, 6 4, 4 my = 2
10 TTL3:1 6 m4:1 4 m5:1

Proof: Let mj = length of largest increasing subse-
quence beginning with a, k= 1,...,n% + 1.



Suppose there exists an mp > n + 1. Then there
exists an increasing subsequence of length m; > n+
1. Hence there exists an increasing subsequence of
length n + 1.

Suppose mi < n+ 1. Then mp = 1,2, ..., or n.

Hence there exists an ¢ such that my = ¢ for n + 1
ar’s.

There exists ag,, ag,, ..., ak, ., such that
mrg, — Mg, = ... = man — 1
Show ay, ,ak,, ..., ak, ., 18 a decreasing sequence.

Suppose not. Then there exists a j such that ag, >
Ak q -
7 an increasing subsequence of length 7 starting at

Ak,

There does not exist an increasing subsequence of
length ¢ + 1 starting at ay,

J an increasing subsequence of length 7 starting at

Akj 1



There does not exist an increasing subsequence of
length ¢ + 1 starting at ay,_

Suppose Ak ;1 Qhyy Qhgs -5 Oy 1S an increasing sub-
sequence of length 1.

Then ay,,ax,; ,,0nys Qpys ..., G, 18 an increasing sub-
sequence of length ¢ + 1, a contradiction.



