\magnification 2000 \parskip 10pt \parindent 0 pt Show $\leq$ is a partial order: Claim: $\leq$ is reflexive (ie $\pi \leq \pi$). Let $A$ be the set of inversions of $\pi$. Then $A \subset A$. Hence $\pi \leq \pi$. Claim: $\leq$ is transitive (ie if $\pi \leq \sigma$ and $\sigma \leq \tau$, then $\pi \leq \tau$). Let $A$ be the set of inversions of $\pi$. Let $B$ be the set of inversions of $\sigma$. Let $C$ be the set of inversions of $\tau$. $\pi \leq \sigma$ implies $A \subset B$. $\sigma \leq \tau$ implies $B \subset C$. $A \subset B$. and $B \subset C$ implies $A \subset C$. Hence $\pi \leq \tau$. Claim: $\leq$ is antisymmetric (ie if $\pi \leq \sigma$ and $\sigma \leq \pi$, then $\pi = \sigma$). Let $A$ be the set of inversions of $\pi$. Let $B$ be the set of inversions of $\sigma$. $\pi \leq \sigma$ implies $A \subset B$. $\sigma \leq \pi$ implies $B \subset A$. $A \subset B$. and $B \subset A$ implies $A = B$. Let $a_i = |\{ j ~|~ (j, i) \in A \}|$. Then $a_1, ..., a_n$ is the inversion sequence for the permutation $\pi$. Since $A = B$, $\pi$ and $\sigma$ have the same inversion sequence. Hence $\pi = \sigma$ by thm 4.2.1. \eject 5.3 Let $r \in {\cal R}$, $k \in {\cal Z}$. Define $\left(\matrix{r \cr k}\right) = \cases { {r(r-1) ... (r - k + 1) \over k!} & if $k \geq 1$ \cr 1 & if $k = 0$ \cr 0 & if $k \leq -1$ \cr } $ \vskip 10pt 5.6: Newton's Binomial Theorem Thm 5.6.1: Let $\alpha \in {\cal R}$. Then if $ 0 \leq |x| < |y|$, $$(x + y)^\alpha = \Sigma_{k = 0}^\infty \left(\matrix{\alpha \cr k}\right) x^k y^{\alpha - k}$$ \vfill \eject Thm 5.4.1: Let $n$ be a positive integer. The sequence of binomial coefficients is a unimodal sequence. In particular if $n$ is even, $$ \left(\matrix{n \cr 0}\right) < \left(\matrix{n \cr 1}\right) ... < \left(\matrix{n \cr {n \over 2}}\right) $$ $$ \left(\matrix{n \cr {n \over 2}}\right) > ... > \left(\matrix{n \cr n-1}\right) > \left(\matrix{n \cr n}\right) $$ and if $n$ is odd $$ \left(\matrix{n \cr 0}\right) < \left(\matrix{n \cr 1}\right) ... < \left(\matrix{n \cr {n -1 \over 2}}\right) = \left(\matrix{n \cr {n +1 \over 2}}\right) $$ $$ \left(\matrix{n \cr {n + 1 \over 2}}\right) > ... > \left(\matrix{n \cr n-1}\right) > \left(\matrix{n \cr n}\right) $$ Proof idea: Look at ${ \left(\matrix{n \cr k }\right) \over \left(\matrix{n \cr k - 1 }\right) } = {n - k + 1 \over k} $ \eject 5.5: Multinomial thm Define $\left(\matrix{n \cr n_1 n_2 ... n_t }\right) = {n! \over n_1! n_2! ... n_t!} $ Thm 5.5.1: Let $n \in {\cal Z}$. Then $$(x_1 + x_2 + ... x_t)^n = \Sigma \left(\matrix{n \cr n_1 n_2 ... n_t }\right) x_1^{n_1} x_2^{n_2} + ... x_t^{n_t}$$ where the summation extends over all nonnegative integral solutions to $n_1 + n_2 + ... + n_t = n$ \end 4321: $\{ (4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1) \}$ 4312: $\{ (4, 3), (4, 1), (4, 2), (3, 1), (3, 2) \}$ \hfil 3421: $\{ (4, 2), (4, 1), (3, 2), (3, 1), (2, 1) \}$ \hfil 4231: $\{ (2, 1), (3, 1), (4, 1), (4, 2), (4, 3) \}$ 4132: $\{ (4,1), (4, 2), (4, 3), (3,2) \}$ \hfil 3412: $\{ (3, 1), (3,2), (4, 1), (4, 2) \}$ \hfil 3241: $\{ (4, 1), (3, 2), (3, 1), (2, 1), \}$ \hfil 2431: $\{ (2, 1), (3, 1), (4, 1), (4, 3) \}$ \hfil 4213: $\{ (2, 1), (4, 1), (4, 2), (4, 3) \}$ 4123: $\{ (4,1), (4, 2), (4, 3) \}$ \hfil 1432: $\{ (4, 2), (4, 3), (3,2) \}$ \hfil 3142: $\{ (3, 1), (3,2), (4, 2) \}$ \hfil 3214: $\{ (3, 2), (3, 1), (2, 1) \}$ \hfil 2341: $\{ (2, 1), (3, 1), (4, 1) \}$ \hfil 2413: $\{ (2, 1), (4, 1), (4, 3) \}$ 1423: $\{ (4, 2), (4, 3) \}$ \hfill 1342: $\{ (4, 2), (3,2) \}$ \hfill 3124: $\{ (3, 1), (3,2) \}$ \hfill 2314: $\{ (2, 1), (3, 1) \}$ \hfill 2143: $\{ (2, 1), (4, 3) \}$