7.6: A geometry example

Thm 7.6.1: Let $h_{n}=$ the number of ways of dividing a convex polygonal region with $n+1$ sides into triangular regions by inserting diagonals which do not intersect in the interior of the polygonal region. Define $h_{1}=1$. Then

$$
\begin{aligned}
& h_{n}=\Sigma_{k=1}^{n-1} h_{k} h_{n-k}, n \geq 2 \\
& h_{n}=\frac{1}{n}\binom{2 n-2}{n-1}, n \geq 1
\end{aligned}
$$

$h_{n}=\Sigma_{k=1}^{n-1} h_{k} h_{n-k}, n \geq 2, h_{1}=1, h_{2}=h_{1} h_{1}=1$
$h_{3}=h_{1} h_{2}+h_{2} h_{1}=2, h_{4}=h_{1} h_{3}+h_{2} h_{2}+h_{3} h_{1}=2+1+2=5$
Let $g(x)=0+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+\ldots$
Then $[g(x)]^{2}=\left(h_{1} x+h_{2} x^{2}+h_{3} x^{3}+\ldots\right)\left(h_{1} x+h_{2} x^{2}+h_{3} x^{3}+\ldots\right)$
$=\left(h_{1}^{2}\right) x^{2}+\left(h_{1} h_{2}+h_{2} h_{1}\right) x^{3}+\left(h_{1} h_{3}+h_{2} h_{2}+h_{3} h_{1}\right) x^{4}+\ldots$
7.7 Exponential Generating Functions

Instead of using $1, x, x^{2}, \ldots, x^{n}, \ldots$
we can use $\frac{1}{0!}, \frac{x}{1!}, \frac{x^{2}}{2!}, \ldots, \frac{x^{n}}{n!}, \ldots$
Ex: The standard generating function of $1,1,1, \ldots$ is
$g(x)=1+x+x^{2}+\ldots+x^{n}+\ldots=\frac{1}{1-x}$
The exponential generating function of $1,1,1$ is $g^{(e)}(x)=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}, \ldots=e^{x}$

Ex: The standard generating function of $2,3,4,5,0,0, \ldots$ is
$g(x)=2+3 x+4 x^{2}+5 x^{3}$
The exponential generating function of $2,3,4,5,0,0, \ldots$ is
$g^{(e)}(x)=2+3 x+4 \frac{x^{2}}{2!}+5 \frac{x^{3}}{3!}, \ldots$
Ex: The standard generating function of $1, a, a^{2}, \ldots$ is
$g(x)=1+a x+a^{2} x^{2}+\ldots+a^{n} x^{n}+\ldots=\frac{1}{1-a x}$
The exponential generating function of $1, a, a^{2}, \ldots$ is
$g^{(e)}(x)=1+a x+a^{2} \frac{x^{2}}{2!}+\ldots+a^{n} \frac{x^{n}}{n!}, \ldots=e^{a x}$

Thm 7.7.1: Let the multiset $S=\left\{n_{1} \cdot a_{1}, n_{2} \cdot a_{2}, \ldots, n_{k} \cdot a_{k}\right\}$ Let $h_{n}=$ the number of n-permutations of S.
$g^{(e)}(x)=f_{n_{1}}(x) f_{n_{2}}(x) \ldots f_{n_{k}}(x)$ where
$f_{n_{i}}(x)=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n_{i}}}{n_{i}!}$

Suppose a code consisting of integers between 0 and 5 inclusive of size k must contain the following:
even number of 0 's
odd number of 1's
three or four 2's
the number of 3 's is a multiple of five
between zero to four (inclusive) 4's
zero or one 5
Find the number of codes of size k.
Find the number of codes of size 100 .

