\magnification 2000 \parskip 10pt \parindent 0pt \hsize 7.4truein \hoffset -0.5truein 7.4: Generating Functions $g(x) = h_0 + h_1x + h_2x^2 + ....$ is the {\it generating function} for the sequence $h_0, h_1, h_2, ....$. Ex: The generating fn for the sequence 2, 3, 4, 0, 0, 0, ... is $g(x) = 2 + 3x + 4x^2$ Ex: The generating function for the sequence 1, 1, 1, ... is $g(x) = 1 + x + x^2 + ... = {1 \over 1 - x}$ Ex: The generating function for the sequence $\left(\matrix{m \cr 0 }\right)$, $\left(\matrix{m \cr 1 }\right)$, $\left(\matrix{m \cr 2 }\right)$, ..., $\left(\matrix{m \cr m }\right)$ is $g(x) = \left(\matrix{m \cr 0 }\right) + \left(\matrix{m \cr 1 }\right)x + \left(\matrix{m \cr 2 }\right)x^2 + ... \left(\matrix{m \cr m }\right)x^m= (1 + x)^m$ Ex: Suppose $\alpha \in {\cal R}$. The generating function for the sequence $\left(\matrix{\alpha \cr 0 }\right)$, $\left(\matrix{\alpha \cr 1 }\right)$, $\left(\matrix{\alpha \cr 2 }\right)$, ..., is $g(x) = \left(\matrix{\alpha \cr 0 }\right) + \left(\matrix{\alpha \cr 1 }\right)x + \left(\matrix{\alpha \cr 2 }\right)x^2 + ... = (1 + x)^\alpha$ Ex: Let $h_n$ = number of nonnegative solutions to \hfil \break $e_1 + e_2 + ... + e_k = n$ Thus $h_n = $ \vskip 10pt Thus $g(x) = $ \end