7.4: Generating Functions
$g(x)=h_{0}+h_{1} x+h_{2} x^{2}+\ldots$. is the generating function for the sequence $h_{0}, h_{1}, h_{2}, \ldots$.

Ex: The generating fn for the sequence $2,3,4,0,0,0, \ldots$ is
$g(x)=2+3 x+4 x^{2}$
Ex: The generating function for the sequence $1,1,1, \ldots$ is
$g(x)=1+x+x^{2}+\ldots=\frac{1}{1-x}$
Ex: The generating function for the sequence
$\binom{m}{0},\binom{m}{1},\binom{m}{2}, \ldots,\binom{m}{m}$ is
$g(x)=\binom{m}{0}+\binom{m}{1} x+\binom{m}{2} x^{2}+\ldots\binom{m}{m} x^{m}=(1+x)^{m}$
Ex: Suppose $\alpha \in \mathcal{R}$. The generating function for the sequence
$\binom{\alpha}{0},\binom{\alpha}{1},\binom{\alpha}{2}, \ldots$, is
$g(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\ldots=(1+x)^{\alpha}$

Ex: Let $h_{n}=$ number of nonnegative solutions to
$e_{1}+e_{2}+\ldots+e_{k}=n$
Thus $h_{n}=$

Thus $g(x)=$

Suppose a multiset consisting of integers between 0 and 5 inclusive of size k must contain the following:
even number of 0 's
odd number of 1's
three or four 2's
the number of 3's is a multiple of five
between zero to four (inclusive) 4's
zero or one 5
Find the number of multisets of size k.
Find the number of multisets of size 100 .

