\magnification 1200 \parskip 9pt \parindent 0pt \hsize 7.4truein \hoffset -0.5truein \vsize 9.6truein Ex: Solve the recurrance relation: $h_n + h_{n-2} = 0$ $h_0 = 3, h_1 = 5$ $q^n + q^{n-2} = 0$ $q^2 + 1 = 0$ $q = \pm i$ $h_n = c_1 i^n + c_2 (-i)^n$ $c_1 + c_2 = 3$ implies $c_2 = 3 - c_1$ $c_1i - c_2i = 5$ $-c_1 + c_2 = 5i$ $-c_1 + 3 - c_1 = 5i$ $-2c_1 + 3 = 5i$ $c_1 = {3 - 5i \over 2}$ $c_2 = 3 - ({3 - 5i \over 2}) = {3 + 5i\over 2}$ $h_n = ({3 - 5i \over 2}) i^n + ({3 + 5i \over 2}) (-i)^n$ $h_{2j} = ({3 - 5i \over 2}) i^{2j} + ({3 + 5i \over 2}) (-i)^{2j}$ $h_{2j+1} = ({3 - 5i \over 2}) i^{2j+1} + ({3 + 5i \over 2}) (-i)^{2j+1}$ $= ({3i + 5 \over 2}) (-1)^j + ({-3i + 5 \over 2}) (-1)^{j}$ Ex: Solve the recurrance relation, $h_n - 2h_{n-1} + h_{n-3} - h_{n-4} = 0$ \hfil \break $h_0 = 3, h_1 = 3, h_2 = 7, h_3 = 15$, $(x - 1)^3(x + 1)$ $=(x^3 - 3x^2 + 3x - 1)$ $=(x^4 - 2x^3 + 2x - 1)$ q = 1 , 1, 1, -1 $h_n = c_1 + c_2n + c_3n^2 + c_4(-1)^n$ $h_0 = c_1 + c_4$ $h_1 = c_1 + c_2 + c_3 - c_4$ $h_2 = c_1 + 2c_2 + 4c_3 + c_4$ $h_3 = c_1 + 3c_2 + 9c_3 - c_4$ $\matrix{ 1 & 0 & 0 & 1 & a \cr 1 & 1 & 1 & -1 & b \cr 1 & 2 & 4 & 1 & c \cr 1 & 3 & 9 & -1 & d }$ $\matrix{ 1 & 0 & 0 & 1 & a \cr 0 & 1 & 1 & -2 & b-a \cr 0 & 2 & 4 & 0 & c-a \cr 0 & 3 & 9 & -2 & d-a }$ $\matrix{ 1 & 0 & 0 & 1 & a \cr 0 & 1 & 1 & -2 & b-a \cr 0 & 0 & 2 & 4 & c-a - 2(b-a) \cr 0 & 0 & 6 & 4 & d-a - 3(b-a) }$ $\matrix{ 1 & 0 & 0 & 1 & a \cr 0 & 1 & 1 & -2 & b-a \cr 0 & 0 & 2 & 4 & c-a - 2(b-a) \cr 0 & 0 & 0 & -8 & d-a - 3(b-a) - 3[c-a - 2(b-a)]}$ $\matrix{ 1 & 0 & 0 & 1 & a \cr 0 & 1 & 1 & -2 & \cr 0 & 0 & 2 & 4 & c-a \cr 0 & 0 & 0 & -8 & d-a - 3[c-a]}$ $\matrix{ 1 & 0 & 0 & 1 & 3 \cr 0 & 1 & 1 & -2 & 0 \cr 0 & 0 & 2 & 4 & 4 \cr 0 & 0 & 0 & -8 & d- 3 - 12}$ $h_0 = 3, h_1 = 3, h_2 = 7, h_3 = 15$, $\matrix{ 1 & 0 & 0 & 1 & 3 \cr 0 & 1 & 1 & -2 & 0 \cr 0 & 0 & 1 & 2 & 2 \cr 0 & 0 & 0 & 1 & 0}$ $\matrix{ 1 & 0 & 0 & 0 & 3 \cr 0 & 1 & 1 & 0 & 0 \cr 0 & 0 & 1 & 0 & 2 \cr 0 & 0 & 0 & 1 & 0}$ $\matrix{ 1 & 0 & 0 & 0 & 3 \cr 0 & 1 & 0 & 0 & -2 \cr 0 & 0 & 1 & 0 & 2 \cr 0 & 0 & 0 & 1 & 0}$ $= ~~~~~~~~ (x^3 - 3x^2 + 3x - 1)$ $=(x^4 - 3x^3 + 3x^2 - x)$ \end 16: $x^n - 3x^{n-2} + 2x^{n-3}$ $x^3 - 3x + 2 = 0 1 - 3 + 2 = 0 (x - 1)(x^2 + x - 2) = (x - 1)(x - 1)(x + 2) \end