## 6.3 Derangements

Suppose each person in a group of n friends brings a gift to a party. In how many ways can the n gifts be distributed so that each person receives one gift and no person receives their own gift.

Let the set of friends =  $\{p_1, ..., p_n\}$  where  $p_j$  = person j. Let the set of gifts =  $\{g_1, ..., g_n\}$  where  $g_j$  = the gift brought by person j.

Suppose  $f: \{p_1, ..., p_n\} \to \{g_1, ..., g_n\}$ ,  $f(p_k) = g_j$  iff person  $p_k$  receives give  $g_j$ , the gift brought by person j.

If each person receives one gift, then f is a bijection. If no person receives their own gift. Then  $f(p_j) \neq g_j$ .

In simpler notation,  $f: \{1, ..., n\} \rightarrow \{1, ..., n\}$  such that  $f(j) \neq j$ 

 $f: \{1, ..., n\} \rightarrow \{1, ..., n\}$  such that f(f)

Recall: a permutation on  $\{1,...,n\}$  is a bijection  $f:\{1,...,n\} \to \{1,...,n\}$ 

Ex: The permutation 1 2 3 4 5 corresponds to the identity function.

Ex: The permutation 1 3 2 corresponds to the function f(1) = 1, f(2) = 2, f(3) = 2

Defn: A derangement of  $\{1, ..., n\}$  is a permutation  $i_1 i_2 ... i_n$  such that  $i_j \neq j$ . I.e, j is not in the jth place.

In function notation:  $f(j) = i_j$ , then if  $i_1 i_2 ... i_n$  is a derangement,  $f(j) \neq j$ .

In yet other wording, recall a permutation corresponds to the placement of n non-attacking rooks on an  $n \times n$  chessboard.

Ex: The permutation 1 3 2 corresponds to the following rook placement:



A derangement corresponds to non-attacking rook placement with forbidden positions along the diagonal (j, j), for j = 1, ..., n.

Ex: If rooks are placed on the following  $3 \times 3$  chessboard in non-attacking position, then the rook placement corresponds to a derangement if no rook is placed in a spot marked with an X.





Thus the derangements of  $\{1, 2, 3\}$  are 2 3 1 and 3 1 2.

Let  $D_n$  = the number of derangements of  $\{1, ..., n\}$ . Thus  $D_3 = 2$ . Thm 6.3.1: For  $n \ge 1$ ,  $D_n = n!(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!})$ 

Pf: Use the inclusion and exclusion principle: If  $A_i \subset S$ ,  $\overline{\cup A_i} = |S| - \sum_{j=1}^n |A_j| + \sum_{i,j} |A_i \cap A_j| - \dots + (-1)^n |A_1 \cap A_2 \cap \dots \cap A_n|.$ 

Choose S. What can we count which contains the set of derangements?

Let S = the set of permutations of  $\{1, ..., n\}$ . Then |S| = n!.

Choose  $A_j$  such that the set of derangements  $= \overline{\cup A_j}$ . Let  $A_j$  = set of permutations such that j is in the jth spot.

 $|A_j| = (n-1)!$  since there is only one choice for the jth spot (namely j), leaving n-1 terms to permute in the remaining n-1 places.

 $|A_i \cap A_j| = (n-2)!$  since there is only one choice for the *i*th spot (namely *i*) and only one choice for the *j*th spot (namely *j*), leaving n-2 terms to permute in the remaining n-2 places.

Similarly,  $|A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}| = (n-k)!$ .

Thus  $D_n = n! - \sum_{j=1}^n (n-1)! + \sum_{i,j} (n-2)! - \dots + (-1)^n (n-n)!$ 

$$= \binom{n}{0} n! - \binom{n}{1} (n-1)! + \binom{n}{2} (n-2)! - \dots + \binom{n}{n} (-1)^n 0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} + \dots + (-1)^n \frac{n!}{n!} = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} + \dots + (-1)^n \frac{1}{n!}\right)$$

Recall  $\binom{n}{k}$  = number of ways to choose k  $A_i$ 's.

Sidenote: Finding the number of derangements is often called the hat check problem, because in the old days it was sometimes stated in the following terms: If n men check their hats, what is the probability that the hats are returned so that no one received their own hat.

Recall: If  $E \subset S$ , then the probability of  $E = P(E) = \frac{|E|}{|S|}$ 

S = sample space, E = events.

Note: we assume each outcome is equally likely.

Suppose 4 customers at a restaurant order 4 meals. What is the probability that a waiter delivers these 4 orders to the 4 customers so that no customer receives what they ordered?

Answer: 
$$\frac{D_4}{4!} = 1 - 1 + \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$$

The probability that a permutation of  $\{1,...,n\}$  is a derangement  $=\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}+...+(-1)^n\frac{1}{n!}$ 

Recall Taylor's expansion from Calculus I,  $f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!} (x-a)^j$  (under appropriate hypothesis).

Thus 
$$e^{-1} = \sum_{j=0}^{\infty} (-1)^j \frac{1}{j!}$$
 (let  $f(x) = e^x, x = -1, a = 0$ ).

Thus  $e^{-1}$  is a good approximation for the probability of a derangement for n (slightly) large.

Thus the probability of a derangement is about the same when n = 5 as it is for n = 50000000000.

We can derive a recursive formula for  $D_n$  (we will look at many recursive formulas in chapter 7).

Lemma A: 
$$D_n = (n-1)(D_{n-2} + D_{n-1})$$
 for  $n \ge 3$ .

Note the above formula is a recursive formula as we can determine  $D_n$  by calculating  $D_k$  for k < n.

Note  $D_1 = 0$ ,  $D_2 = 1$  (as 2.1 is the only derangement of  $\{1, 2\}$ ).

Thus 
$$D_3 = 2(0+1) = 2$$
,  $D_4 = 3(1+2) = 9$ ,  $D_5 = 4(2+9) = 44$ , etc.

Combinatorial proof of lemma A:

Let  $\mathcal{D}_n$  = the set of derangements of  $\{1, ..., n\}$ .

 $D_n$  = the number of derangements of  $\{1, ..., n\} = |\mathcal{D}_n|$ .

We need to show that  $D_n$  is a product of n-1 and  $D_{n-2}+D_{n-1}$ . If we can partition  $\mathcal{D}_n$  into n-1 subsets where each subset has  $D_{n-2}+D_{n-1}$  elements, we can use the multiplication principle to show  $D_n=(n-1)(D_{n-2}+D_{n-1})$ .

Let's focus on one of the positions of a derangement. The last (nth) position of our derangement can be anything except n. Thus there are n-1 choices for the last (nth) position. Note the factor n-1 appears in our formula.

Let  $\mathcal{R}_k$  = the set of derangements of  $\{1, ..., n\}$  where k is in the nth position for k = 1, ..., n - 1.

Then 
$$\mathcal{D}_n = \bigcup_{j=0}^{n-1} \mathcal{R}_n$$

Let  $r_k = |\mathcal{R}_k|$  the number of derangements such that k is in the nth position.

Note that  $r_1 = r_2 = ... = r_{n-1}$  (while  $r_n = 0$ ).

Then 
$$D_n = r_1 + ... + r_{n-1} = r_{n-1} + ... + r_{n-1} = (n-1)r_{n-1}$$
.

Thus we have (hopefully) simplified our problem to showing that  $D_{n-2} + D_{n-1} = r_{n-1}$  = the number of derangements such that n-1 is in the *n*th position.

We need to partition the permutations in  $\mathcal{R}_{n-1}$  into two sets, one with  $D_{n-2}$  elements and the other with  $D_{n-1}$  elements.

We can easily take care of  $D_{n-2}$ . The numbers n-1 and n do not appear in any derangement of  $\{1, ..., n-2\}$ . In  $\mathcal{R}_{n-1}$ , n-1 appears in the last position. We can take a look at the derangements in  $\mathcal{R}_{n-1}$ , such that n appears in the (n-1)st position. If we remove the nth and (n-1)st entries, we obtain a derangement in  $\mathcal{D}_{n-2}$ .

Ex: for n = 5,  $23154 \in \mathcal{R}_{n-1} \to 231 \in \mathcal{D}_{n-2}$ .

Thus  $D_{n-2}$  = the number of derangements of  $\mathcal{R}_{n-1}$  (such that n-1 is in the *n*th position and) n is in the (n-1)st position.

We can now look at the remaining derangements in  $\mathcal{R}_{n-1}$  where n is not in the (n-1)st position.

Let  $\mathcal{P}_n$  the set of derangement where n-1 is in the *n*th position and k is in the (n-1)st position for some  $k \neq n, n-1$  (I.e,  $k \leq n-2$ ).

We would like to show that  $D_{n-1} =$  the number of derangements of  $\{1, ..., n-1\}$  such that n-1 is in the *n*th position and k is in the (n-1)st position for some  $k \le n-2 = |\mathcal{P}_n|$ .

Let  $\mathcal{D}_{n-1}$  = the set of derangements of  $\{1, ..., n-1\}$ .

We would like to create a bijection from  $\mathcal{P}_n$  to  $\mathcal{D}_{n-1}$ 

Note that the differences between  $\mathcal{P}_n$  and  $\mathcal{D}_{n-1}$ . A derangement in  $\mathcal{P}_n$  has n terms, while a derangement in  $\mathcal{D}_{n-1}$  has n-1 terms. Thus we need to remove a term to go from  $\mathcal{P}_n$  to  $\mathcal{D}_{n-1}$ .

If  $i_1 i_2 ... i_n \in \mathcal{P}_n$ , then  $i_n = n - 1$  and  $i_{n-1} = k$  for some  $k \leq n - 2$ . Also  $i_j = n$  for some j.

In  $\mathcal{D}_{n-1}$ ,  $i_{n-1} = k$  for some  $k \leq n-2$  (by definition of derangement of  $\{1, ..., n-1\}$ , so we have no problems with the (n-1)st term.

However, we have the following differences between  $\mathcal{P}_n$  and  $\mathcal{D}_{n-1}$ :

 $i_1 i_2 ... i_n$  has n terms and

n appears somewhere in  $i_1i_2...i_n$ , and

 $i_n = n - 1$ , so the placement of n - 1 doesn't vary.

We can fix this by removing the *n*th term and replacing  $i_j = n$  with  $i_j = n - 1$ 

Let  $i_1 i_2 ... i_n \in \mathcal{P}_n$ . Then  $i_n = n - 1$  and  $i_{n-1} = k$  for some  $k \leq n - 2$ .

Create  $a_1a_2...a_{n-1}$ , a derangement of  $\{1,...,n-1\}$  by

let 
$$a_l = \begin{cases} i_l & \text{if } i_l \neq n, \ 1 \leq l \leq n-1 \\ n-1 & \text{if } i_l = n \end{cases}$$

Ex: For n = 5,  $25314 \in |\mathcal{P}_n| \to 2431 \in |\mathcal{D}_{n-1}|$ .

This gives us a bijection between  $\mathcal{P}_n$  and  $\mathcal{D}_{n-1}$ . Thus  $D_{n-1} = |\mathcal{P}_n|$ .

Another (simpler) recurrance relation:

Lemma B: 
$$D_n = nD_{n-1} + (-1)^n$$
 for  $n \ge 2$ 

Proof by induction on n.

n = 2:  $D_2 = 1$  (use definition or Thm 6.3.1)  $2D_1 + (-1)^2 = 2(0) + 1 = 1$ . Thus  $D_n = nD_{n-1} + (-1)^n$  holds for n = 2.

Suppose 
$$D_{k-1} = (k-1)D_{k-2} + (-1)^{k-1}$$
 for  $k < n$ 

By lemma A, 
$$D_k = (k-1)D_{k-2} + (k-1)D_{k-1}$$

By the induction hypothesis,  $D_{k-1} = (k-1)D_{k-2} + (-1)^{k-1}$ . Thus  $(k-1)D_{k-2} = D_{k-1} - (-1)^{k-1}$ 

Thus 
$$D_k = D_{k-1} - (-1)^{k-1} + (k-1)D_{k-1} = kD_{k-1} + (-1)(-1)^{k-1} = kD_{k-1} + (-1)^k$$

## 6.4 Permutations with Forbidden Positions

Goal: To derive a more general formula for counting the number of permutations with arbitrary forbidden positions.

Recall in section 6.3, we looked at permutations with forbid-

den positions A derangement corresponds to non-attacking rook placement with forbidden positions along the diagonal (j, j), for j = 1, ..., n. In this section, we will cover arbitrary forbidden positions.

Let  $X_j \subset \{1, ..., n\}$  for j = 1, ..., n.

Defn:  $P(X_1, X_2, ..., X_n)$  = the set of permutations  $i_1 i_2 ... i_n$  of  $\{1, ..., n\}$  such that  $i_j \notin X_j$ .

Defn:  $p(X_1, X_2, ..., X_n) = |P(X_1, X_2, ..., X_n)|$ 

Ex:  $P(X_1, X_2, ..., X_n)$  corresponds to the set of derangements of  $\{1, ..., n\}$  if  $X_j = \{j\}$ . Thus  $D_n = |P(\{1\}, \{2\}, ..., \{n\}|$ 

Recall, we can visualize permutations with forbidden positions via  $n \times n$  chessboards.

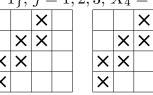
Ex: Derangements of  $\{1, 2, 3\}$ :  $X_i = \{j\}.$ 

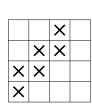


Non-derangement example:

$$n = 4, X_i = \{j, j + 1\}, j = 1, 2, 3, X_4 = \emptyset.$$

|   |   | X |  |
|---|---|---|--|
|   | X | × |  |
| X | X |   |  |
| X |   |   |  |





$$P(X_1, X_2, ..., X_n) = P(\{1, 2\}, \{2, 3\}, \{3, 4\}, \emptyset)$$
  
=  $\{3124, 3412, 3421, 4123\}.$ 

$$p(X_1, X_2, ..., X_n) = p(\{1, 2\}, \{2, 3\}, \{3, 4\}, \emptyset)$$
  
=  $|\{3124, 3412, 3421, 4123\}| = 4.$ 

We can use the inclusion-exclusion principle to calculate  $p(X_1, X_2, ..., X_n)$  (although in many cases, the computation can be tediously long and beyond computer capabilities for large n).

Similar to the proof of Thm 6.3.1. By the inclusion-exclusion principle,

$$p(X_1, X_2, ..., X_n) = |S| - \sum_{j=1}^n |A_j| + \sum_{i,j} |A_i \cap A_j| - ... + (-1)^n |A_1 \cap A_2 \cap ... \cap A_n|$$

where

Let S = the set of permutations of  $\{1, ..., n\}$ . Then |S| = n!.

Let  $A_j = \text{set of permutations } i_1 i_2 ... i_n \text{ such that } i_j \in X_j \text{ (for a fixed } j).$ 

Note there are  $|X_j|$  ways to place a rook in the *j*th position. There are (n-1)! ways to place the remaining n-1 rooks so that the permutation belongs to  $A_j$ .

Thus 
$$|A_j| = |X_j|(n-1)!$$
.  
 $\sum_{j=1}^n |A_j| = \sum_{j=1}^n |X_j|(n-1)! = (n-1)! \sum_{j=1}^n |X_j| = r_1(n-1)!$  where  $r_1 = \sum_{j=1}^n |X_j|$ .

Note  $r_1$  = number of ways to place 1 nonattacking rooks on an  $n \times n$  chessboard so that the rook is in a forbidden position.

Let's now look at  $A_j \cap A_k$ .  $i_1 i_2 ... i_n \in A_j \cap A_k$ , then  $i_j \in X_j$  and  $i_k \in X_k$ . Thus there are  $|X_j|$  ways to place a rook in the

jth position and  $|X_k|$  ways to place a rook in the kth position. There are (n-2)! ways to place the remaining n-1 rooks so that the permutation belongs to  $A_i \cap A_k$ .

Thus 
$$|A_j \cap A_k| = |X_j||X_k|(n-2)!$$
.  
 $\sum_{i,j}|A_i \cap A_j| = \sum_{i,j}|X_j||X_k|(n-2)! = (n-2)!\sum_{i,j}|X_j||X_k|$ . Let  $r_2 = \sum_{i,j}|X_j||X_k|$ .

Note  $r_2$  = number of ways to place 2 nonattacking rooks on an  $n \times n$  chessboard so that each of the 2 rooks is in a forbidden position.

Similarly, define  $r_k$  = number of ways to place k nonattacking rooks on an  $n \times n$  chessboard so that each of the k rooks is in a forbidden position.

Then 
$$\Sigma |A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}| = r_k(k-1)!$$
.

Thus we have proved:

Thm 6.4.1: 
$$p(X_1, X_2, ..., X_n) = n! - r_1(n-1)! + r_2(n-2)! - ... + (-1)^n r_n$$
.

Note that if there are many forbidden positions, then  $r_k$  may be difficult to calculate and it may be easier to calculate  $p(X_1, X_2, ..., X_n)$  directly. If there are few forbidden positions, Thm 6.4.1 is the easier method to compute  $p(X_1, X_2, ..., X_n)$ .

Examples:

Let 
$$X = \{1, 2, 3\}$$
.  $p(\{1, 2\}, \{1, 3\}, \{3\}) =$ 

Note in this case, it was easiest to count directly and not use

Thm 6.4.1.

Examples:

Let 
$$X = \{1, 2, 3, 4, 5\}$$
.  $p(\{1, 2\}, \{1, 3\}, \{3\}) =$ 

## 6.5 Another Forbidden Position Problem

Goal: To derive a formula for counting the number of permutations with relative forbidden positions.

Ex: Suppose children 1, 2, 3, 4, and 5 sit in a row in class. Children 1 and 2 cannot sit next to each other or they will cause trouble.

The order in which the children sit corresponds to a permutation of  $\{1, 2, 3, 4, 5\}$ . If 1 is in the *i*th spot, then 2 cannot be in the i-1st spot or the i+1th spot. Thus the pattern 21 or 12 cannot appear in our permutation. This is called a relative forbidden position as certain positions for the placement of 2 are forbidden, but these forbidden positions depend on the placement of 1.

We will focus on the relative forbidden position problem in which

Let  $Q_n$  = the number of permutations of  $\{1, 2, ..., n\}$  in which none of the patterns 12, 23, 34, ..., (n-1)n occurs.

Thm 6.5.1 
$$Q_n = n! - {n-1 \choose 1} (n-1)! + {n-1 \choose 2} (n-2)! - \dots + {n-1 \choose n-1} (-1)^{n-1} 1!$$

Proof: Use inclusion-exclusion principle.

Let S= the set of permutations of  $\{1,...,n\}$ . Then |S|=n!.

Let  $A_j = \text{set of permutations}$  which contain the pattern j(j+1).

Note:  $|A_j| = (n-1)!$ 

$$|A_i \cap A_j| = (n-2)!$$

$$|A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}| = (n-k)!.$$