\input epsf \input graphicx \magnification 1200 \parindent 0pt \parskip 13pt \def\u{\vskip -10pt} \def\s{\vskip 5pt} \def\w{\vskip 2.0in } \nopagenumbers \vsize 9.8truein Math 150 Exam 2 \vskip -10pt November 3, 2006 \def\c{\vskip 1.5cm} \def\b{\vfill} \def\u{\vskip -10pt} [10]~ 1a.) What is the coefficient of $x^3y^2z^5$ in the expansion of $(2x + y - z)^{10}:~ \underline{ (2^3)(-1)^5({10! \over 3!2!5!}) = {-8(10!) \over 3!2!5!} }$ [6]~ 1b.) What is the coefficient of $x^3y^2z^4$ in the expansion of $(2x + y - z)^{10}:~ \underline{0}$ [84]~ Choose 4 from the following 5 problems. Circle your choices: A B C D E \break You may do all 5 problems in which case your unchosen problem can replace your lowest problem at 4/5 the value. Note you must fully explain your answers. A.) Use Newtons binomial theorem to estimate $\sqrt{5}$ (expand to at least 4 terms). $\sqrt{5} = (1 + 4)^{1\over 2} = 2({1 \over 4} + 1)^{1\over 2} = 2\Sigma_{k=0}^\infty \left(\matrix{{1 \over 2} \cr k}\right) ({1 \over 4})^k \sim 2[1 + ({{1 \over 2} \over 1!}) ({1 \over 4}) + { ({1 \over 2})({-1 \over 2}) \over 2!} ({1 \over 4})^2 + { ({1 \over 2})({-1 \over 2})({-3 \over 2}) \over 3!} ({1 \over 4})^3]$ $ = 2[1 + {1 \over 8} - {1 \over 128} + {1 \over 16} ({1 \over 64})]$ $ = 2 + {1 \over 4} - {1 \over 64} + {1 \over 8} ({1 \over 64})$ $ = 2 + {1 \over 4} - {1 \over 64} + {1 \over 512}$ B.) Find the number of integers between 1 and 10,000 inclusive that are not divisible by 4, 6, 10. Similar to ch 6: 2 \end C.) What is the number of ways to place ten nonattacking rooks on the 10-by-10 board with forbidden positions as shown? section 6.4 \includegraphics[width=24ex]{chess} \vfill D.) Let $R_n$ denote the number of permutations of $X_n = \{1, 2, ..., n\}$, $n \geq 3$ in which neither the pattern 12 nor the pattern 23 occurs (note there are only 2 restrictions, for example, the pattern 34 may or may not occur). Determine a formula for $R_n$ and prove your formula is correct. section 6.4 E.) Consider the partially ordered set $({\cal P}(X_2), \subset)$ of subsets of $\{1, 2\}$ partially ordered by containment. Let a function $f$ in ${\cal F}({\cal P}(X_2))$ be defined by $$f(A, B) = \cases{2 & if $A = B$ \cr 3 & if $A \subset B$, $A \not= B$ \cr 0 & otherwise}$$ \u Find the following: $f^{-1}(\emptyset, \emptyset) = \underline{2}$ \hfil $f^{-1}(\emptyset, \{1\}) = \underline{3}$ \hfil $f^{-1}(\emptyset, \{2\}) = \underline{3}$ $f^{-1}(\emptyset, \{1, 2\}) = \underline{3}$ \hfil $(f*f)(\emptyset, \{1\}) = \underline{section 6.6}$ \hfil \end