Math 150 Exam 2
November 3, 2006
[10] 1a.) What is the coefficient of $x^{3} y^{2} z^{5}$ in the expansion of $(2 x+y-z)^{10}: \underline{\left.\left(2^{3}\right)(-1)^{5}\left(\frac{10!}{3!2!5!}\right)=\frac{-8(10!)}{3!2!5!}\right]}$
[6] 1b.) What is the coefficient of $x^{3} y^{2} z^{4}$ in the expansion of $(2 x+y-z)^{10}: \underline{0}$
[84] Choose 4 from the following 5 problems. Circle your choices: A B C D E You may do all 5 problems in which case your unchosen problem can replace your lowest problem at $4 / 5$ the value. Note you must fully explain your answers.
A.) Use Newtons binomial theorem to estimate $\sqrt{5}$ (expand to at least 4 terms).
$\sqrt{5}=(1+4)^{\frac{1}{2}}=2\left(\frac{1}{4}+1\right)^{\frac{1}{2}}=2 \Sigma_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(\frac{1}{4}\right)^{k} \sim 2\left[1+\left(\frac{\frac{1}{2}}{1!}\right)\left(\frac{1}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)}{2!}\left(\frac{1}{4}\right)^{2}+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)}{3!}\left(\frac{1}{4}\right)^{3}\right]$
$=2\left[1+\frac{1}{8}-\frac{1}{128}+\frac{1}{16}\left(\frac{1}{64}\right)\right]=2+\frac{1}{4}-\frac{1}{64}+\frac{1}{8}\left(\frac{1}{64}\right)=2+\frac{1}{4}-\frac{1}{64}+\frac{1}{512}$
B.) Find the number of integers between 1 and 10,000 inclusive that are not divisible by $4,6,10$.

Similar to ch 6: 2

