Math 150 Exam 1 October 4, 2006

Choose 7 from the following 9 problems. Circle your choices: $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$ You may do more than 7 problems in which case your two unchosen problems can replace your lowest one or two problems at 2/3 the value as discussed in class.

1.) P(10, 7) =____ $C(10, 7) = \begin{pmatrix} 10 \\ 7 \end{pmatrix} =$ ____

The inversion sequence for the permutation 15243 is _____

The permutation corresponding to the inversion sequence 3, 0, 2, 1, 0 is _____

2.) r(9,2) =_____

r(3,3) =_____

Given that $\{x_{13}, x_{12}, x_7, x_1\}$ is a 4-combination of $\{x_{13}, x_{12}, ..., x_1, x_0\}$, Determine the combinations which come immediately before and after the combination $\{x_{13}, x_{12}, x_7, x_1\}$, using the base 2 generating scheme.

Before $\{x_{13}, x_{12}, x_7, x_1\}$:

After $\{x_{13}, x_{12}, x_7, x_1\}$: _____

Determine the 4-combinations of $\{1, 2, ..., 14\}$ which come immediately before and after the the 4-combination $\{2, 8, 13, 14\}$ in lexicographical ordering.

Before $\{2, 8, 13, 14\}$: ______

After $\{2, 8, 13, 14\}$:_____

3.) In how many ways can 9 indistinguishable rooks be places on a 20-by-20 chessboard so that no rook can attack another rook?

In how many ways can 9 rooks be places on a 20-by-20 chessboard so that no rook can attack another rook if no two rooks have the same color?

4.) How many different circular permutations can be made using using 30 beads if you have 20 green beads, 9 blue beads and 1 red beads?

5.) How many sets of 3 numbers each can be formed from the numbers $\{1, 2, 3, ..., 50\}$ if no two consecutive numbers are to be in a set?

6.) Use the pigeonhole principle to prove that in a group of n people where n > 1, there are at least 2 people who have the same number of acquaintances. State where you use the pigeonhole principle.

7.) Suppose $x, y \in \mathbb{Z}$. Define a relation on \mathbb{Z} such that $x \sim y$ iff there exists $k \in \mathbb{Z}$ such that x - y = 5k. Show \sim is an equivalence relation on \mathbb{Z} . What are the equivalence classes?

8.) Let $X = \{1, 2, 3\}$. Define a partial order on $X \times X$ by $(x_1, y_1) \leq_x (x_2, y_2)$ iff $x_1 \leq x_2$ (for example $(1, 3) \leq_x (2, 1)$). Is \leq_x reflexive? Is \leq_x symmetric? Is \leq_x antisymmetric? Is \leq_x antisymmetric? Is \leq_x transitive? Is \leq_x a partial order? Is \leq_x an equivalence relation? Give a proof for each answer.

9.) Use a combinatorial argument to prove $\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}$