Suppose a multiset consisting of integers between 0 and 5 inclusive of size \(k \) must contain the following:

- even number of 0’s: \(x^0 + x^2 + x^4 + \ldots = \frac{1}{1-x^2} \)
- odd number of 1’s: \(x^1 + x^3 + x^5 + \ldots = \frac{x}{1-x^2} \)
- three or four 2’s: \(x^3 + x^4 = x^3(1 + x) \)
- the number of 3’s is a multiple of five: \(x^0 + x^5 + x^{10} + \ldots = \frac{1}{1-x^5} \)
- between zero to four (inclusive) 4’s: \(x^0 + x^1 + x^2 + + x^3 + x^4 = \frac{1-x^5}{1-x} \)
- zero or one 5: \(x^0 + x^1 = 1 + x \)

\[g(x) = (x^0 + x^2 + x^4 + \ldots)(x^1 + x^3 + x^5 + \ldots)(x^3 + x^4) \]
\[(x^0 + x^5 + x^{10} + \ldots)(x^0 + x^1 + x^2 + + x^3 + x^4)(x^0 + x) \]

\[= \left(\frac{1}{1-x^2} \right) \left(\frac{x}{1-x^2} \right) x^3(1 + x) \left(\frac{1}{1-x^5} \right) \left(\frac{1-x^5}{1-x} \right) (1 + x) \]

\[= \frac{x^4}{(1-x)^3} = x^4 \sum_{k=0}^{\infty} \binom{3+k}{k} - 1 \]
\[x^k = \sum_{k=0}^{\infty} \frac{(k+2)(k+1)}{2} x^{k+4} \]

Find the number of multisets of size \(n \).

Find the number of multisets of size 100.
Determine the generating function for \(h_n = \) the number of ways to make \(n \) cents using pennies, nickels, dimes, and quarters.

Note \(h_n = \) the number of nonnegative integral solutions to

\[
e_1 + 5e_2 + 10e_3 + 25e_4 = n
\]

Let \(f_1 = e_1, f_2 = 5e_2, f_3 = 10e_3, f_4 = 25e_4, \)

Then \(h_n = \) the number of nonnegative integral solutions to

\[
f_1 + f_2 + f_3 + f_4 = n
\]

where \(f_1 \) is a nonnegative integer

\(f_2 \) is a multiple of 5

\(f_3 \) is a multiple of 10

\(f_4 \) is a multiple of 25

Hence the generating function for \(h_n \) is