\magnification 2000 \parskip 8pt \parindent 0pt \hsize 7.4truein \hoffset -0.5truein \vsize 10truein \voffset -0.3truein 6.6 Mobius inversions Defn: The Euler function $\phi(n) = |S_n|$ \hfil \break where $S_n = \{k ~:~ 1\leq k \leq n , GCD(k, n) = 1\}$ Ex: $\phi(1) = \underline{\hskip 0.5in}$, $\phi(6) = \underline{\hskip 0.5in}$, $\phi(15) = \underline{\hskip 0.5in}$ \vskip 10pt ${\cal N}$ is partially ordered by $k \leq n$ iff $k|n$ Let $F: {\cal N} \rightarrow {\cal R}$, $F(n) = \phi(n)$ Then $G(n) = $%%$\Sigma_{\{d ~:~ d|n\}} \phi(d)$. By thm 6.6.1 $\phi(n) =$%%$ \Sigma_{\{d ~:~ d|n\}} G(d)\mu(d, n)$. Ex: $G(6) = \phi(1) + \phi(2) + \phi(3) + \phi(6) = 1 + 1 + 2 + 2 = 6$ Note that $G(d) = d$. Hence $\phi(n) = \Sigma_{\{d ~:~ d|n\}} d ~\mu(d, n)$. Let $\zeta(x, y) = \cases{1 & if $x \leq y$ \cr 0 & otherwise}$ %%$\in \{f: X \times X \rightarrow {\cal R} ~:~$ %%\rightline{if $f(x, y) \not= 0$, then $x \leq y \}$} $\zeta(x, y) = \cases{1 & if %% $x | y$ \cr 0 & otherwise}$ The Mobius function, $\mu = \zeta^{-1}$ \eject Suppose $f(x, x) \not= 0 \forall x \in X$ Then $f^{-1}(x, x) = {1 \over f(x, x)}$ $f^{-1}(x, y) = -\Sigma_{\{z~:~ x \leq z < y\}}f^{-1}(x, z){f(z, y) \over f(y, y)}$ for $x < y$, $f^{-1}(x, y) = 0$ for $x > y$. Since $\zeta(x, x) = 1 \forall x \in X$, Mobius fn, $\mu = \zeta^{-1}$ exists. $\mu(x, x) = {1 \over \zeta(x, x)} = 1$ Hence $\mu(1, 1) = 1$ $\mu(x, y) = -\Sigma_{\{z~:~ x \leq z < y\}}\mu(x, z){\zeta(z, y) \over \zeta(y, y)}$ $ = -\Sigma_{\{z~:~ x \leq z < y\}}\mu(x, y)$ $\mu(1, d) = -\Sigma_{\{z~:~ 1 \leq z < d\}}\mu(1, z)$ = $ -\Sigma_{\{z~:~ z | d, z \not= d \}}\mu(1, z)$ $\mu(1, 2) = -\Sigma_{\{z~:~ 1 \leq z < 2\}}\mu(1, z) = -\mu(1, 1) = -1$ $\mu(1, 3) = -\Sigma_{\{z~:~ 1 \leq z < 3\}}\mu(1, z) = -\mu(1, 1) = -1$ $\mu(1, 4) = -\Sigma_{\{z~:~ 1 \leq z < 4\}}\mu(1, z) =$ %%$-\mu(1, 1) - \mu(1, 2) = 0$ $\mu(1, 5) = -\Sigma_{\{z~:~ 1 \leq z < 5\}}\mu(1, z) = -\mu(1, 1) =$ $-1$ $\mu(1, 6) = -\Sigma_{\{z~:~ 1 \leq z < 6\}}\mu(1, z) = -\mu(1, 1) - \mu(1, 2) - \mu(1, 3) =$ %%$= 1 -1 -1 = -1$ \vfill $\mu(1, 12) = -\Sigma_{\{z~:~ 1 \leq z < 30\}}\mu(1, z) = $ \line{$-\mu(1, 1) - \mu(1, 2) - \mu(1, 3) - \mu(1, 4)- \mu(1, 6)= $} %%1 %%-1 -1 = -1$ \vfill $\mu(1, 30) = -\Sigma_{\{z~:~ 1 \leq z < 30\}}\mu(1, z) = $ \line{$-\mu(1, 1) - \mu(1, 2) - \mu(1, 3) - \mu(1, 5)- \mu(1, 6)- \mu(1, 10) - \mu(1, 15)= $} %%1 %%-1 -1 = -1$ \eject Suppose $d = p_1^{k_1}p_2^{k_2}....p_r^{k_r}$ $\mu(1, d) = \cases{1 & if $d = 1$ \cr (-1)^r & if $k_i = 1 \forall i$ \cr 0 & otherwise}$ %%$\not= 0$ iff $d = 1$ or $d = p_1p_2... p_k$ where $p_i$ are distinct %%primes. In which case, %%$\mu(1, d) = -\Sigma_{\{z~:~ 1 \leq z < d\}}\mu(1, z) = (-1)^r$ where %%$r$ is the number of distinct primes dividing $d$ Suppose $kx = y$, then $\mu(x, y) = \mu(1, y/x)$ Hence $\phi(n) = \Sigma_{\{d ~:~ d|n\}} d ~\mu(d, n)$ = %%Hence $\phi(n) = \Sigma_{\{d ~:~ d|n\}} d \mu(1, n/d) %%= \Sigma_{\{d ~:~ d|n\}} n/d \mu(1, d)$. \end Let $F: {\cal N} \rightarrow {\cal R}$, $F(n) = \phi(n)$ Then $G(n) = \Sigma{\{d ~:~ d|n\}} \phi(d)$. $\phi(n) = \Sigma{\{d ~:~ d|n\}} G(d)\mu(d, n) $. By thm 6.6.1: \eject Let $S_n^d = \{k ~:~ 1\leq k \leq n , GCD(k, n) = d\}$ Note if $d|n$, then $|S_n^d| = \phi(n/d)$ Proof: Let $f: S_{n \over d} \rightarrow S_n^d$, $f(k) = dk$ Claim: $f$ is well defined: \hfil \break if $GCD(k, n/d) = 1$, then $GCD(dk, n) = d$ Claim $f$ is onto:\hfil \break Suppose $ GCD(m, n) = d$, then $ GCD(m/d, n/d) = d/d$ and $f(m/d) = m$ Hence $f$ is a bijection and $|S_n^d| = \phi(n/d)$ ${\cal N}$ is partially ordered by $k \leq n$ iff $k|n$ Let $\zeta(x, y) = \cases{1 & $x \leq y$ \cr 0 & otherwise}$ %%$\in \{f: X \times X \rightarrow {\cal R} ~:~$ %%\rightline{if $f(x, y) \not= 0$, then $x \leq y \}$} $\zeta(x, y) = \cases{1 & $x | y$ \cr 0 & otherwise}$ The Mobius function, $\mu = \zeta^{-1}$ \eject Suppose $f(x, x) \not= 0 \forall x \in X$ Then $f^{-1}(x, x) = {1 \over f(x, x)}$ $f^{-1}(x, y) = -\Sigma_{\{z~:~ x \leq z < y\}}f^{-1}(x, z){f(z, y) \over f(y, y)}$ for $x < y$, $f^{-1}(x, y) = 0$ for $x > y$. Since $\zeta(x, x) = 1 \forall x \in X$, Mobius fn, $\mu = \zeta^{-1}$ exists. $\mu(x, x) = {1 \over \zeta(x, x)} = 1$ Hence $\mu(1, 1) = 1$ $\mu(x, y) = -\Sigma_{\{z~:~ x \leq z < y\}}\mu(x, z){\zeta(z, y) \over \zeta(y, y)}$ $ = -\Sigma_{\{z~:~ x \leq z < y\}}\mu(x, y)$ $\mu(1, 2) = -\Sigma_{\{z~:~ 1 \leq z < 2\}}\mu(1, z) = -\mu(1, 1) = -1$ $\mu(1, 3) = -\Sigma_{\{z~:~ 1 \leq z < 3\}}\mu(1, z) = -\mu(1, 1) = -1$ $\mu(1, 4) = -\Sigma_{\{z~:~ 1 \leq z < 4\}}\mu(1, z) = -\mu(1, 1) - \mu(1, 2) = 0$ $\mu(1, 5) = -\Sigma_{\{z~:~ 1 \leq z < 4\}}\mu(1, z) = -\mu(1, 1) = -1$ $\mu(1, n) = -\Sigma_{\{z~:~ 1 \leq z < 4\}}\mu(1, z) = \phi(n)$ Let $x < y$, let $d = gcd(x, y)$, then $\mu(x, y) = \mu(x/d, y/d)$ Let $F: {\cal N} \rightarrow {\cal R}$, $F(n) = \phi(n)$ Then $G(n) = \Sigma{\{d ~:~ d|n\}} \phi(d)$. $\phi(n) = \Sigma{\{d ~:~ d|n\}} G(d)\mu(d, n)$. By thm 6.6.1: \end Let $X$ be a finite set. Let ${\cal F} = \{f: X \times X \rightarrow {\cal R} ~:~$ if $f(x, y) \not= 0$, then $x \leq y \}$ Define the operation * on ${\cal F}$ by $$f*g = \cases{\Sigma_{\{z~:~ x \leq z \leq y \}} f(x, z)g(z, y) & if $x \leq y$ \cr 0 & otherwise}$$ Note $*$ is associative: $f*(g*h) = (f*g)*h$ For example $\delta = \cases{1 & x = y \cr 0 & otherwise}$ Note $\delta$ acts as the indentity for *: $f* \delta = \delta * f = f$ Let $\zeta(x, y) = \cases{1 & $x \leq y$ \cr 0 & otherwise}$ If $f(x, x) \not= 0$ for all $x \in X$, then $f$ is invertible: There exist $f^{-1}$ such that $f*f^{-1} = f^{-1}*f = \delta$. Def. The Mobius function, $\mu = \zeta^{-1}$ Example: if $X = X_n = \{1, 2, ..., n\}$ and ${\cal P}(X_n) $ is partially ordered by the relation $\subset$, then $\mu(A, B) = (-1)^{|B|-|A|}$ Thm 6.6.1. Let $(X, \leq)$ be a partially ordered set with a smallest element 0. If $F: X \rightarrow {\cal R}$, define $G: X \rightarrow {\cal R}$ by $G(x) = \Sigma_{\{z ~:~ z \leq x\}}F(z)$. Then $F(x) = \Sigma_{\{y ~:~ y \leq x\}}G(y)\mu(y, x) $ Proof: Evaluate $\Sigma_{\{y ~:~ y \leq x\}}G(y)\mu(y, x) $ \end Let $X_n = \{1, 2, ..., n\}$ ${\cal P}(X_n) = \{A \subset X_n \}$ ${\cal P}(X_n) $ is partially ordered by the relation $\subset$. Suppose $F: {\cal P}(X_n) \rightarrow {\cal R}$ Define $G: {\cal P}(X_n) \rightarrow {\cal R}$ by $G(K) = \Sigma_{L \subset K} F(L)$ Claim: we can invert this equation to recover $F$ from $G$: $$F(K) = \Sigma_{L \subset K} (-1)^{|K| - |L| }G(L)$$ Example: Let $S$ be any finite set. Let $A_i \subset S$ and \hfil \break let $A_i$ be indexed by elements of $X_n$ \hfil \break (ie, we have $A_1$, $A_2$, ..., $A_n$). Let $F: {\cal P}(X_n) \rightarrow {\cal R}$ be defined by \hfil \break $F(K) = |\{ s ~:~ s \not\in A_i \forall i \in K, s \in A_j \forall j \not\in K \}|$ $\{ s ~:~ s \not\in A_i ~\forall i \in K, s \in A_j ~\forall j \not\in K \}$ \vskip -5pt = $\{ s ~:~ s \in \overline{A_i} ~\forall i \in K, s \in A_j ~\forall j \in \overline{K} \}$ \vskip -5pt $= (\cap_{i \in K}\overline{A_i}) \cap (\cap_{i \in \overline{K}}A_i)$ \vfill \eject Suppose $S = \{a_1, a_2, a_3, a_4\}$. Suppose $X_n = \{1, 2\}$ Let $A_1 = \{a_1, a_2, a_3\}$. Let $A_2 = \{a_1, a_2\}$. $F(\emptyset) = |(\cap_{i \in \emptyset}\overline{A_i}) \cap (\cap_{i \in {X_n}}A_i)| = |A_1 \cap A_2| = |\{a_1, a_2\}| = 2$ $F( \{1\} ) = |(\cap_{i \in \{1\} }\overline{A_i}) \cap (\cap_{i \in \{2\}} A_i)| = |\overline{A_1} \cap A_2| = |\emptyset| = 0$ $F( \{2\} ) = |(\cap_{i \in \{2\} }\overline{A_i}) \cap (\cap_{i \in \{1\}} A_i)| = |\overline{A_2} \cap A_1| = |\{a_3\}| = 1$ $F( \{1, 2\} ) = |(\cap_{i \in \{1, 2\} }\overline{A_i}) \cap (\cap_{i \in \emptyset} A_i)| = |\overline{A_1} \cap \overline{A_2}| = |\{a_4\}| = 1$ $G(K) = \Sigma_{L \subset K} F(L) = |\cap_{i \in \overline{K}}A_i)|$ $G(\emptyset) = F(\emptyset) = 2 $ $G( \{1\} ) = F(\emptyset) + F( \{1\} ) = 2 $ $G( \{2\} ) = F(\emptyset) + F( \{2\} ) = 3 $ $G( \{1, 2\} ) = F(\emptyset) + F( \{1\} ) + F( \{2\} ) + F( \{1, 2\} ) = 4$ By claim, $F(K) = \Sigma_{L \subset K} (-1)^{|K| - |L| }G(L)$ Hence $F(X_n) = \Sigma_{L \subset X_n} (-1)^{ |X_n| - |L| }G(L)$ %%\hskip 0.8in $ = \Sigma_{L \subset X_n} (-1)^{n - |L| }G(L) $ %%\hskip 0.8in $= \Sigma_{L \subset X_n} (-1)^{ |X_n| - |L| } |\cap_{i \in \overline{L}}A_i)| $ \hskip 0.8in $= \Sigma_{L \subset X_n} (-1)^{ |\overline{L}| } |\cap_{i \in \overline{L}}A_i)| $ \hskip 0.8in $= \Sigma_{\overline{L} \subset X_n} (-1)^{ |\overline{L}| } |\cap_{i \in \overline{L}}A_i)| $ \hskip 0.8in $= \Sigma_{K \subset X_n} (-1)^{ |K| } |\cap_{i \in K}A_i)| $ \eject \end