\magnification 1200 \parskip 10pt \parindent 0pt \hsize 7.4truein \hoffset -0.5truein \nopagenumbers 6.6 Mobius inversions Let $X$ be a finite set. Let ${\cal F} = \{f: X \times X \rightarrow {\cal R} ~|~$ if $f(x, y) \not= 0$, then $x \leq y \}$ Define the operation * on ${\cal F}$ by $$f*g = \cases{\Sigma_{\{z~|~ x \leq z \leq y \}} f(x, z)g(z, y) & if $x \leq y$ \cr 0 & otherwise}$$ Note $*$ is associative: $f*(g*h) = (f*g)*h$ Let $\delta = \cases{1 & x = y \cr 0 & otherwise}$ Note $\delta$ acts as the identity for *: $f* \delta = \delta * f = f$ If $f(x, x) \not= 0$ for all $x \in X$, then $f$ is invertible: There exist $f^{-1}$ such that $f*f^{-1} = f^{-1}*f = \delta$. In this case, $f^{-1}(x, x) = {1 \over f(x, x)}$ $f^{-1}(x, y) = -\Sigma_{\{z~:~ x \leq z < y\}}f^{-1}(x, z){f(z, y) \over f(y, y)}$ for $x < y$, $f^{-1}(x, y) = 0$ if $x \not\leq y$. \end