\magnification 2000 \parskip 8pt \parindent 0pt \hsize 7.4truein \hoffset -0.5truein 6.6 Mobius inversions Let $X_n = \{1, 2, ..., n\}$ ${\cal P}(X_n) = \{A \subset X_n \}$ ${\cal P}(X_n) $ is partially ordered by the relation $\subset$. Suppose $F: {\cal P}(X_n) \rightarrow {\cal R}$ Define $G: {\cal P}(X_n) \rightarrow {\cal R}$ by $G(K) = \Sigma_{L \subset K} F(L)$ Claim: we can invert this equation to recover $F$ from $G$: $$F(K) = \Sigma_{L \subset K} (-1)^{|K| - |L| }G(L)$$ Example: Let $S$ be any finite set. Let $A_i \subset S$ and \hfil \break let $A_i$ be indexed by elements of $X_n$ \hfil \break (ie, we have $A_1$, $A_2$, ..., $A_n$). Let $F: {\cal P}(X_n) \rightarrow {\cal R}$ be defined by \hfil \break $F(K) = |\{ s ~|~ s \not\in A_i \forall i \in K, s \in A_j \forall j \not\in K \}|$ $\{ s ~|~ s \not\in A_i ~\forall i \in K, s \in A_j ~\forall j \not\in K \}$ \vskip -5pt = $\{ s ~|~ s \in \overline{A_i} ~\forall i \in K, s \in A_j ~\forall j \in \overline{K} \}$ \vskip -5pt $= (\cap_{i \in K}\overline{A_i}) \cap (\cap_{i \in \overline{K}}A_i)$ \vfill \eject Suppose $S = \{a_1, a_2, a_3, a_4\}$. Suppose $X_n = \{1, 2\}$ Let $A_1 = \{a_1, a_2, a_3\}$. Let $A_2 = \{a_1, a_2\}$. $F(\emptyset) = |(\cap_{i \in \emptyset}\overline{A_i}) \cap (\cap_{i \in {X_n}}A_i)| = |A_1 \cap A_2| = |\{a_1, a_2\}| = 2$ $F( \{1\} ) = |(\cap_{i \in \{1\} }\overline{A_i}) \cap (\cap_{i \in \{2\}} A_i)| = |\overline{A_1} \cap A_2| = |\emptyset| = 0$ $F( \{2\} ) = |(\cap_{i \in \{2\} }\overline{A_i}) \cap (\cap_{i \in \{1\}} A_i)| = |\overline{A_2} \cap A_1| = |\{a_3\}| = 1$ $F( \{1, 2\} ) = |(\cap_{i \in \{1, 2\} }\overline{A_i}) \cap (\cap_{i \in \emptyset} A_i)| = |\overline{A_1} \cap \overline{A_2}| = |\{a_4\}| = 1$ $G(K) = \Sigma_{L \subset K} F(L) = |\cap_{i \in \overline{K}}A_i)|$ $G(\emptyset) = F(\emptyset) = 2 $ $G( \{1\} ) = F(\emptyset) + F( \{1\} ) = 2 $ $G( \{2\} ) = F(\emptyset) + F( \{2\} ) = 3 $ $G( \{1, 2\} ) = F(\emptyset) + F( \{1\} ) + F( \{2\} ) + F( \{1, 2\} ) = 4$ By claim, $F(K) = \Sigma_{L \subset K} (-1)^{|K| - |L| }G(L)$ Hence $F(X_n) = \Sigma_{L \subset X_n} (-1)^{ |X_n| - |L| }G(L)$ %%\hskip 0.8in $ = \Sigma_{L \subset X_n} (-1)^{n - |L| }G(L) $ %%\hskip 0.8in $= \Sigma_{L \subset X_n} (-1)^{ |X_n| - |L| } |\cap_{i \in \overline{L}}A_i)| $ \hskip 0.8in $= \Sigma_{L \subset X_n} (-1)^{ |\overline{L}| } |\cap_{i \in \overline{L}}A_i)| $ \hskip 0.8in $= \Sigma_{\overline{L} \subset X_n} (-1)^{ |\overline{L}| } |\cap_{i \in \overline{L}}A_i)| $ \hskip 0.8in $= \Sigma_{K \subset X_n} (-1)^{ |K| } |\cap_{i \in K}A_i)| $ \eject \end