6.6 Mobius inversions

Let X be a finite set.
Let $\mathcal{F}=\{f: X \times X \rightarrow \mathcal{R} \mid$ if $f(x, y) \neq 0$, then $x \leq y\}$
Define the operation $*$ on \mathcal{F} by

$$
f * g= \begin{cases}\Sigma_{\{z \mid x \leq z \leq y\}} f(x, z) g(z, y) & \text { if } x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

Note $*$ is associative: $f *(g * h)=(f * g) * h$
For example $\delta= \begin{cases}1 & \mathrm{x}=\mathrm{y} \\ 0 & \text { otherwise }\end{cases}$
Note δ acts as the identity for ${ }^{*}: f * \delta=\delta * f=f$
Let $\zeta(x, y)= \begin{cases}1 & x \leq y \\ 0 & \text { otherwise }\end{cases}$
If $f(x, x) \neq 0$ for all $x \in X$, then f is invertible: There exist f^{-1} such that $f * f^{-1}=f^{-1} * f=\delta$.

Def. The Mobius function, $\mu=\zeta^{-1}$
Example: if $X=X_{n}=\{1,2, \ldots, n\}$ and $\mathcal{P}\left(X_{n}\right)$ is partially ordered by the relation \subset, then $\mu(A, B)=(-1)^{|B|-|A|}$

Thm 6.6.1. Let (X, \leq) be a partially ordered set with a smallest element 0 . If $F: X \rightarrow \mathcal{R}$, define $G: X \rightarrow \mathcal{R}$ by $G(x)=\Sigma_{\{z \mid z \leq x\}} F(z)$. Then
$F(x)=\Sigma_{\{y \mid y \leq x\}} G(y) \mu(y, x)$
Proof: Evaluate $\Sigma_{\{y \mid y \leq x\}} G(y) \mu(y, x)$

